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ABSTRA

This paper considers the segmentation of range image measurements into surface patches which are either plane or curved
and which are described formally by a function. After a formal description of the segmentation, we present and compare three
methods suited for plane and curved patch segmentation and show the results of experiments conducted for testing their
practical behaviour. The two first methods use the classical approach of region growing whereas the third method is based on a
relaxation process. This original and last method exhibits simplicity and low computational complexity. Thanks to its
parallel nature, it can be considered as a good candidate for range image segmentation in real-time applications.

1. INTRODUCTION

In machine vision, there is a growing interest in range
imaging. This is mainly because, in contrast to the
traditional intensity images, range images give the true
geometric shape of the object surface, which is a very
intrinsic feature of the object. Also, as a consequence of this
interest, many range image sensors are already available, and
more performant sensors under development. Range imaging
is successful where a simple geometric description of the
scene where a straightforward data interpretation is needed, as
for example in dimension control. However, in the case of
more complex tasks requiring higher level interpretation of
the scene, several processing steps are required: significant
among those steps is the segmentation of range data into
surface patches.

Image segmentation is a well known problem in computer
vision!. In the case of range images, segmentation is
considered as the basic step by which range data of a scene is
divided into several regions. Each region stands for a surface
patch which is uniform with respect to a given property and
which distinguishes it from the neighboring patches.
Segmentation based on function approximation creates
patches whose points are approximated by one function per
patch. An interesting feature of this method is that the
segmented image is a complete range image description from
which the image data can be reconstructed.

In this paper, we discuss and compare three methods used
for the segmentation of range image data and present results
from a series of experiments. The following features are
common to all the methods: they are global and the function
approximation is realized by least square polynomial fitting.

The principle of the first method is very general and has
often been used>57. It uses region growing by merging
regions. In our application, it is used to segment a range
image into planar patches.

The second method has been proposed by Besl and Jain>. It
applies a region growing process around an initial uniform
seed. A surface patch is approximated by one of an ordered
family of functions which has the feature that a higher order
function can describe a lower order one but not vice versa. In
their implementation of the method, polynomials are used.

The third method is an original one which proceeds
iteratively by diffusion. It is adequate for planar surfaces. It
has a slightly poorer segmentation performance compared to
the two other methods but, thanks to its simplicity, lower
algorithmic complexity and parallel nature, it can be
considered as a good candidate for range image segmentation
in real-time applications.

We structure the paper as follows. First, the range image
segmentation problem will be formalized and we will show
how it is connected to the general segmentation problem
(section 2). In section 3, we present the first method, perfor-
ming region merging, followed by the second method which
proceeds by region expansion around an initial seed (section
4). Section 5 is devoted to the original method based on a
diffusion process. Finally, we presents results of experiments
performed on sensed images and form a conclusion.

2. RANGE IMAGE SEGMENTATION
2.1 Image segmentation

We recall briefly the commonly used formal definition of
image segmentation ',
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An image, in its general mathematical form, is a two-
dimensional array X of n-tuples. Missing values are coded as
NIL.

x;;€ (R" U {NIL)) M
An image element or pixel Xy is therefore defined by its
position and its value
Xk = (ld,xlj) )]
An image region R, is a set of pixels and an image partition
P a set of image regions

P={Ry, Ry, ...,RN] 3
such that
1) the union of the regions covers exactly the set I of all
pixels
N
Ry =1 @
k=1

2) regions are pairwise disjoint
RinRj=d, Vije [1,2,..N] ,i# &)

A region Ry is said to be connected, if for every two pixels
Xj, xj of Rk there exists a path from x; to xj which lies
entirely inside Rg. Two disjoint regions R; and R; are
adjacent or neighboring if their union RjUR,; is connected.

Given the predicate U, which indicates if a region is
uniform (homogeneous), the image segmentation is realized
by a partition P, such that

1) U(Ry) is true for every region Ry in P, and

2) U(RjUR;) is false for every two regions R; and R;

The methods we are presenting hereafter make the
commonly used assumption that the uniformity involves the
connectivity of the regions. As a consequence, for non-
adjacent regions, U (R;y;) is false in any partition P.

(Note: Henceforth we write Rjj instead of RjUR;).

2.2 Range image

Intuitive description

"Range image" gives a good intuitive description of what it
is: a range image can be considered as an digital video image
where the intensity value is replaced by the distance to the
object. Since each pixel has a corresponding direction of
view, each range image element determines a point in the 3D
space.

Mathematical representation

Hence, a range image may be represented by a two-
dimensional array P of triplets standing for the cartesian
coordinates of points in the 3D space.

pjj € (R® U (NIL)) ©)

The value NIL stands for missing measures. The absence of
measures may have different causes, depending on the
ranging system and the transformations which have been
applied to the range image!?.

Intrinsic features of a range image

Intuitively one recognizes that the mathematical description
of a range image hides some intrinsic features, we try to
highlight hereafter because they found the function based
segmentation approach.

A range image results from a sampling of a two-
dimensional surface in the 3D space. The surface can be
decomposed into smooth patches seperated by discontinuities
(fig.1). To each smooth surface patch Sy corresponds a -
region Ry in the image. A spatial coherence in the image
region arises from the spatial coherence of the sensed surface
paich. ‘

If the image has been constructed by an approximatively
parallel projection of the scene, surfaces may be considered as
being entirely composed of Ng smooth graph surface pat-
ches® Sk(sk,Dy) defined by

z=sx(x.y), iff (x,y) € Dy, Vke [1,2,...Ns]  (7)

where si(x,y) is a twics—differemiable function and Dy is a
domain or subset of R”. The domains do not overlap each
other so that the overall sensed image can be considered as a
piecewise-smooth graph surface. The coordinates x,y and the
image coordinates i,j are linked together: the spatial
coherence in the xy-plane corresponds to the spatial
coherence in the range image and vice versa.

measure

supposed not to i o
roof discontinuity /

be measured

jump \
discontinuity |
x error
patch
\ z
line of sight.
domain

Fig.1. Decompostion of a sensed surface into smooth patches

We note that the functions are in general arbitrarly shaped.
However, a restriction. of range image analysis to certain
classes of scenes provides constraints over the type of
encountered functions sk(x,y). In the case of polyhedral
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objects, for example, the functions si(x,y) are first-order
polynomials.

If the range image points P;j
T
Py = [xij Yij & ®
are considered as being sampled on the sensed surface at
position (xij’yij)’ the measurement error is defined as

& =2;- Sk(xij’yij) for some Dy ©)

Cartesian range image (CRI)

In its most common form, a range image is a 2D array K
of integers. This is true when the points are sampled on a
regular grid and when the z coordinate is quantized. With the
sampling interval Ad in x and y, and the quantization interval
Ah in z, the cartesian coordinates of the 3D points are linked
to the CRI data by the following equations:

For our experiments, we use CRIs.

2 mentation n function approximation

As seen in last section, the range image can be considered
as sampled piecewise-smooth graph function. This motivates
a segmentation approach based on function approximation:
the segmented image should be constituted of connected
regions over which the image data is well approximated by a

smooth function.
Approximation of image data over a single region

We call image surface patch Ay(ag,Ry) the mathematical
structure composed of an image region Ry and a function
ak(x,y). The paich Ay(ax,Ry) is a good approximation of the
image data over Ry, if the approximation error

ek = llg IR, (1)

with eij =% - ak(xij’yij) (12)
is small. The function norm Illl may be the max norm (Loo),
the (Euclidian) root-mean-square error norm (L), or the

mean absolute error norm (L1).
The unconstrained segmentation problem

When no a priori knowledge about the scene is available,
there exists no constraint over the smooth graph functions
Sk(x,y). In this case, the function based image segmentation
problem consists in partitioning the image into surface
patches so that both the number of patches and the overall
approximation error are as small as possible.

Formally, we can state the problem as follows>:

Given the image P, find N, approximating functions ay(x,y)
and N, connected image regions Ry, over which those
functions are evaluated, such that the overall approxi-mation
emor

13)

and the total number of functions and regions N, are
minimal,

The problem, as it has been defined above, is not specified

enough to have a unique solution.

i) The functions must be smooth and described by a few
number of parameters. In addition, each sensed surface
patch Sy of a simple object (e.g. polyhedron) should
give rise to a single image patch Ay. However, there
are no objective constraints on the functions.

ii) The minimization of € and the minimization of N, are
contradictory. In order to apply optimization
techniques, a cost function should defined where the
influence of the two parameters are settled by mean of
weights.

The constrained segmentation problem

Giving an objective constraint for the functions ak(x,y) and
limiting the approximation error €y to a threshold value g,

€k < € (14)

give rise to a well defined problem:

under condition (14), the number N, of regions Ry has to be
minimized.

The segmentation based on function approximation is now
linked to the general definition of image segmentation
(82.3). The predicate U is defined by

URY) = (gk < &) (15)

The two methods using region growing try to give an
optimal solution to the so constrained problem. The third
method is based on other constraints.

3. SEGMENTATION BY STEPWISE OPTIMAL
REGION MERGING

3.1 Principles

The principle of region merging used to segment an image
is very general and simple: _starting with a partition in
uniform regions, adjacent regions are merged two-by-two,
resulting in bigger uniform regions. The process is stopped
when no further uniform region can be created.

This idea has already been used by Horowitz and Pavlidis!"’
in their split-and-merge algorithm. More recently, it has been
used in several segmentation algorithms®%?, also for the
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particular case of range image segmentation by function
approximation.

While Horowitz and Pavlidis merged adjacent regions
fulfilling the uniformity condition in a non-adaptive way,
leading to locally optimal results, the three algorithms
proposed use a stepwise (sequential) merging approach: at
each step, only the two most similar regions are merged,
thus delivering globally optimized results.

This stepwise optimal region merging (SORM) algorithm
can be described as follows:

1. find an initial image partition consisting of (small)
uniform regions

2. merge iteratively the two most similar adjacent
regions

3. stop when the dissimilarity is too high, that is when
the merging would result in a non-uniform region

The algorithm uses a measure of dissimilarity dj; between
two regions Rj and R;. The dissimilarity is a function of
quantities v and v;j attributed, respectively, to the regions R;
and R;. vj represents a "mean value" over the region R;.
When merging two regions R; and R;, the value of the
attribute vjj and also the dissimilarity d(jj)x between the
new created region vj,j and each of its neighbors Ry are

updated.

3.2 wi imal region mergin

segmentation based on plane approximation

lied

The SORM algorithm is used to solve the function based

segmentation problem defined with following constraints:

i) Planar patches Ax(ag,Rk) are only allowed,
constraining the function ag(x,y) to first order
polynomials, even more: to the least square error
fitting first-order polynomial

ii) The uniformity predicate U (Ry) is defined by equation
(15), the Lo-norm being used for ey,

We call this more specific SORM algorithm optimal
planar patch merging (OPPM) algorithm.
Dissimilarity measure

As dissimilarity measure djj we use the increase in least
square approximation error if the two regions R; and R; are
merged,

2 2 2
djj = Ejuj - Ei - Ej (16)
the approximation error being defined as
2 2 2
Ek=zsij=Lk8k an

Rk

where Ly is the number of pixels in Ry,
Stopping condition

The algorithm stops when the merging of the two most
similar adjacent regions, corresponding to min(djj) would
result in a non uniform region.
2
E. .
iy ¢? (18)
Liyj
Region attributes

The vector of the ?olynomial coefficients ux and all the
quantities Sy, hx, Ex, Lx which are necessary to update the
dissimilarity measure and to test the stopping condition are
attributed to the region Ry. Sk is a 3x3 matrix and hy a
R -;/gctor, used to determine uy by solving following equa-
tion”

Skug = hg (19

Initialization

The initial partition consisting of small uniform regions is
realized by performing a plane approximation for every
quadruple of points Pij» Pis1)p Pigie1y and Pi+1)(j31) of
the range image. The values S, hij’ u,. and gi' are
computed, resulting in a corresponding image, partitioned
into one-pixel regions.

Attribute update
When merging the two most similar adjacent regions R;
and R;, the attributes of the newly created region Rjuj are

updated

Siuj =Si+8§;

i) = hithy Siuih @0)
SRS S

Blj=diptEmE; VI T ViV

Livuj =Lit+L,

In the same time, the dissimilarities between R;_ and all its
adjacent regions Ry are computed also, merging them
hypothetically:

T T T
daujk = wiujhiuj + wkhk - u gojyukhdopuk @1

Di ion

Before testing the performances of the OPPM algorithm on

data, its following features must be highlighted:

1) The algorithm has the advantage to be entirely global,
however the merging process is purely sequential and
cannot be parallelized.

2) The same algorithm may be used for higher-order
polynomial approximations. However, the initial
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partitionning must be changed®!° since more than
four points are needed to determine polynomial of order
more than 2.

3) The computational effort for a merging step is high,
this essentially due to the evaluation of the
dissimilarities between the newly created region Rjuj
and each of its neighbours Rg. In order to reduce this
effort, the algorithm may be modified leting its
optimality principle unchanged. A first idea is to
reduce the number of iterations using an initial
partition constituted of bigger regionsg'lo.

However, a second problem still remains. Scene
discontinuities give rise to small regions which show
high dissimilarity against their neighbours. In the
beginning the iterative merging will let them
unchanged while merging and so growing other
regions. Hence, we often come to the situation where
many small regions are adjacent to a big region. When
merging the big region R; with one of its small
neighbours R;, the dissimilarity of the new region
Rju;j against all the neigfbbours hai to be computed.
This is useless since Ejy j = Ei. To avoid this
situation, a conditional update can be introducegl using
a new region attribute E'x. The purpose of E'k is to
store what was the approximation error when
dissimilarities have been updated. When merging the
big region R; with the small region R;, the following
operation is pexformcd:

if Ejuj = E'j, the dissimilar,‘jty is computed_ for
neighbours of R; only and E"j is stored in E'fuj
otherwise the digsimilarity is coglputed for all the
neighbours and Ejyj is stored in E'jy;.

4. SEGMENTATION BY SEED EXPANSION

Besl and Jain described the method in details in their
paper’. Hereafter, we show how it is linked to the other
methods and where the differences are.

The function based segmentation problem is defined with

the following constraints:

i) Function ag(x,y) is one of an ordered family of
functions having the property that each higher order
function can describe a lower order function but not
vice versa. For each paich, the function with the
lowest possible order should be selected. In practice,
polynomials of order 4 or less are used.

ii) the uniformity predicate is defined by equation (15), the
Ly-norm being used for .

We present just the core of Besl and Jain's solution;

Starting with an initial seed and a first-order polynomial,
iteratively, a polynomial is fitted to the region data and the
region is expanded as long as there are pixels compatible
with the function. Whenever the approximation error is too
big, a higher order polynomial will be used. The process
stops when there are no more unused seeds.

More precisely, we write:

0. initialization
choose a seed as the actual region R}, and a first-order
polynomial as the actual function aj(x,y)

1. function approximation
approximate the points in the actual region Ry, by the
Sfunction aj(x.y)

2. unifor, it);‘ test & 2ED
if lg;;lb, 2 egthen increase the order of the
polynomial and go to step 1
(stop if the maximal polynomial order is reached)

3. region growing
increase the actual region by all to Ry connected
pixels x;; which are compatible, i.e. for which
lsijl < gk

4. end-of-growing test
stop if the size of Ry has not increased in step 3,
otherwise go to step 1

The performance of the original algorithm® depends highly

on the following two steps.

i) Preprocessing: the image surface curvatures are
computed and initial seeds are created by eroding the
regions of same curvature type.

ii) Postprocessing: neighboring patches with similar
features are merged.

The algorithm has many parameters that have to be tuned.

2. SEGMENTATION BY DIFFUSION

This approach is quite different from the preceding ones.
First, we note that an assumption over the scenes to treat is
made: they are supposed to contain exclusively polyhedrons,
and the images are supposed to be cartesian (11).

Motivation, problem definition

The motivation for the method is based on the following
considerations. Since the scene contains polyhedral objects
only, the functions which determine the smooth patches of
the sensed surface are first-order polynomials:

Sk(X.y) = agx+bgy+ck (22
Hence, they satisfy the Laplace equation:
Asi(x,y) =0 23
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If the range image would be ideal, i.e. exempt of
measurement errors, the discrete form of the Laplace equation
(24) would be satisfied for every position (i,j) except where
discontinuities occur.

Now, we restate the range image segmentation problem:
given ¢, find values tij such that

or (25)

Relaxation process

The problem is solved by the use of a modified version of
the successive overrelaxation process*. The solution 4 is
obtained iteratively as

[’%1) = (1-7\.)[(131-1) +

A (1) (1) (1) (¢-1)
4 Wit G T eyt bgey) @O
(n) .o o(n)
t'g?) , otherwise

Equation (26) is in fact the discrete form of the heat or
diffusion equation:
P @D A o)

o 4 ~Hj 28)

Fig.2
segmented range image "pyramid" (64x76)

top left: gray-scale coded range image

top right: perspective view of the range image
bottom left: segmentation by region merging
bottom right: segmentation by diffusion

The iterative process is initialized with
)]

and stops when
max IAG1 S oe with o « 1 (30)
i,j

A region of the segmented image consists of connected
pixels such that '

Z:.-€ < [(n) < Z..+€
1 1 i

i €2y

3
Function approximation

The first-order polynomial defining the corresponding planar
patch is computed using only a few sparse points of the
region.

The great advantage of this algorithm is that its iterative
part can be entirely parallelized. It is also remarkable that
equations (26) and (27) describe jointly the possible
behaviour of a cellular neural network.

6. EXPERIMENTS AND RESULTS

The different methods have been tested on 15 sensed range
images. While a part of the images come from the NRCC
set of range imagesn, some other images have been acquired
using our own laser ranging systems.

280 / SPIE Vol. 1395 Close-Range Photogrammetry Meets Machine Vision (1990)



Fig.3. segmented range image "hemisphere” (128x128)

top left: gray-scale coded range image

top right: perspective view of the range image
bottom left: segmentation by seed expansion
bottom right: segmentation by diffusion

6.1 Stepwise optimal region merging

The stepwise optimal planar patch merging algorithm has
been used in its straightforward version as described in §3.2.
In order to keep the computation time within reasonable
limits (about one hour on a uVAX 3400), the image size has
been limited to approximatively 64x64 pixels.

For scenes containing only polyhedrons, the scene
segmentation works as required. Figure 2 shows the results
obtained for a range image of a pyramid: the regions are
represented by their boundaries, superimposed to the range
image.

6.2 Seed expansion

A simplified version of Besl and Jain's algorithm? has been
implemented in LightSpeed™ Pascal on a Macintosh™ Ilcx
computer. The image size has been limited again, here to
128x128 pixels, so that the computation time does not
overrun one hour.

The algorithm has been applied to different kind of scenes.
The segmentation results are satisfying for scenes with
manufactured objects as well as for natural scenes, the
"hemisphere” image (fig.3) and the "bolts" image (fig.4), the

R

T

Fig.4. segmented range image "bolt" (128x128)

top left: gray-scale coded range image

top right: perspective view of the range image
bottom left: segmentation by seed expansion
bottom right: segmentation by diffusion

results are as expected. For the "coffee-cup” image (fig.5)
however, this is no more true: the concentric rings which are
expected are partioned in finer regions.

Our experiments show that the algorithm works well as
long as a sensed surface patch may be represented by a single
polynomial function. For smooth graph surfaces which
cannot be approximated by a single function on a single
region, the algorithm becomes sensitive to the choice of the
initial seeds and the additional merging step is necessary to
obtain satisfying results.

6.3 Diffusion

The segmentation algorithm proceeding by diffusion has
been applied to images representing polyhedrons and curved
objects, using images of a maximum size of 256x256
pixels. Our experiments show an optimum of convergence
for values of A slightly smaller than 1: we have chosen A =
0.96. With o = 0.01, the algorithm converges within 100
steps for all 256x256 images tested, corresponding in the
worst case to 10 minutes of CPU on a pVAX 3400.

Figures 2 to 4 show that the algorithm performs fairly for
planar surfaces and that it is not suited for curved surfaces.
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In this paper, we have exposed the problem of range image
segmentation based on function approximation and presented
also three methods providing solutions. The first two
methods are known from the litterature: both use "region
growing", the first one by region merging, the second one by
seed expansion. The third solution is new, proceeding by
diffusion. The three methods have been tested on several
images and compared, leading to results which can be
summarized as follows:

The method proceeding by seed expansion gives the best
segmentation results because of the use of polynomial
functions of different orders. However, the method is not
straightforward and several parameters must be tuned.

The second technique in turn, using region merging, is
straightforward, but its realization showed a high
computational cost which is not much reducible because of
its purely sequential nature. The method can also be used to
segment images of curved objects.

The newly introduced diffusion technique is suited for
polyhedral objects only but, thanks to its simplicity and
parallel nature, it is a good choice for real time applications.
The analogy to both potential fields and neural networks mak
make the diffusion method particularly interesting for further
investigations.
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