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Abstract 
This paper describes a powerful inexact matching algorithm which has been applied with success to high-level 3D object 
representations in a 3D object recognition system. The algorithm combines in a promising way several approaches proposed 
in the last couple of years: an extension to the backtrack strategies for inexact matching of attributed relational sub-graphs, 
error correction isomorphism, determination of local attribute similarity and global transformation fitting, features which are 
efficiently used for search-tree pruning. The algorithm was tested successfully in a series of experiments involving scenes 
with single and multiple objects. 
 

Index terms: 3D object recognition, scene analysis, inexact sub-graph matching, machine vision 

1. Introduction 
Vision is the most important way for humans to localize, to estimate shapes and to recognize objects in the real world. 
Therefore, quite naturally, efforts have been made since a couple of years in order to integrate similar facilities in automatic 
vision systems. Two typical examples of application domains are assembly lines and robot vision. Rather good results have 
been obtained for two-dimensional objects in artificial, human-made environments and for well defined problems. For three-
dimensional objects in turn, the efforts made have, up to now, essentially shown the high complexity of the problem. 
Nevertheless, researchers are now in the position to test particular 3D object recognition algorithms, to realize prototypes 
with limited features and to apply them to well defined, relatively simple problems. 

The problem 
The problem of 3D object recognition using machine vision can roughly be described as follows: 

 Given a scene containing one or more 3D objects and a library of reference objects, identify one (or more) of 
the 3D scene objects either partially or completely with respect to the given reference object library's elements. 

A frame for an object recognition system 
This rough problem definition gives rise to a frame for an object recognition system, consisting of the following elements: 

i) Acquisition of the rough 3D data and extraction of a convenient high level object representation. 
ii) Matching of the acquired and extracted high-level representation with some reference or model representations, 

resulting in a list of hypotheses on the best correspondence. 
iii) Verification and classification of the resulting hypotheses, the combination of compatible partial results, the 

extraction of useful information on orientation, the localization of recognized elements etc. 
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3D data acquisition preprocessing matching of high 
level representations

postprocessing

object library

high level 
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fig 1.1: a frame for an object recognition system 

Previous work 
This work is based on several papers published during the last couple of years: Tsai and Fu [1] proposed an algorithm for 
error correction isomorphism, Eshra and Fu [2, 3] extended the idea in their backtrack strategy for inexact matching of 
attributed relational sub-graphs. For search tree pruning, some ideas of Shapiro [4] concerning similarity measures and of 
Faugeras and Hebert [5] concerning global transformation fitting have been used. 
Contents of the paper 
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In the present paper, we describe first the preprocessing which is applied to the rough scene data (§2). Once this 
preprocessing done, we can define the object recognition problem more precisely as a (sub-)graph matching problem. 
Inherently, due to the nature of the acquired data and the preprocessing, the matching will be inexact, giving rise to a possibly 
complex search of correspondences. Implementation dependent local and global criteria based on heuristics allow to keep the 
complexity of the process reasonably low. Next, we discuss some of the related, previous work (§3). Many of the ideas that 
have been integrated in our implementation of the matching algorithm which are discussed in paragraph 4, including some 
remarks on the postprocessing. The remaining paragraphs are devoted to the presentation of some results (§5), the concluding 
remarks, an out-view on further subjects of interest and finally the references. 

2. Acquisition of data and the extraction of high level representations 
In order to give a complete view of the environment for which the algorithm has been developed, we present shortly the data 
acquisition device and the preprocessing applied (figure 2.1). 

2.1 Data acquisition and preprocessing 
The input device is a laser range finder using light planes [6], which delivers a huge set of 3D measurements of the visible 
surfaces. A region growing process is used in order to approximate the 3D point set by surfaces, in our implementation 
patches of planar surfaces [7, 8, 9]. The resulting set of surface patches, standing for the scene objects visible surfaces, can 
now be represented at a higher level of abstraction, e.g. in the form of attributed relational graphs (ARGs). Obviously, these 
ARG representations are neither complete (occlusion) nor precise (limited resolution, preprocessing, choice of attributes, etc.) 
representations of the scene objects. 
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 SNa) b) c) d)  
figure 2.1: from 3D data acquisition to high-level representation: 

a) laser range finder, b) 2.5D depth map, c) region/border representation, d) attributed relational graph (ARG) 
representation 

2.2 High level representation: our choice 
Two constraints have been specified for our problem: i) the limitation to polyhedric objects and ii) the use of a high-level 
representation based on planar surfaces. While both constraints do not modify the nature of the important problems in 3D 
object recognition, they reduce significantly the complexity of the implementation. 
We use a high-level representation called planar face representation graph (PFRG), a special form of an ARG. Each node 
stands for a region of an object, approximated by a planar surface patch and each arc for a neighborhood-relation between 
two regions. The node attributes are the area and normal vector of the represented surface. The only arc attribute is the length 
of the border between adjacent regions. 

2.3 Preprocessing 
PFRGs of reference objects will be rather concise, PFRGs of acquired scene data are probable to be cluttered due to the 
reasons mentioned before (§2.1). Therefore, some simple algorithms have been used which merge regions which have 
accidentally been separated and which remove dummy regions, essentially the ones situated near to the borders of real 
surfaces [10]. 

2.4 Re-definition of the task 
Once the high level representation and its relation to real world data being defined, we now can give a more exact task 
description: 

 With both the scene and the reference objects represented in the form of PFRGs, establish an ordered list of 
hypotheses on similar (sub-)PFRGs, taking into account both structural and attributal similarities. 
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3. Related work 
Many of the ideas implemented in our algorithm of paragraph 4 for the inexact matching of PFRGs are issued, or have been 
triggered by work done in the last couple of years: Tsai and Fu [1] established a first base for error-correcting isomorphic 
matching. This work has been continued by Eshra and Fu [2, 3] in their backtrack-based inexact matching scheme. Shapiro's 
paper [4] on the use of metrics was very helpful for the determination of dissimilarities between attributed sub-graphs. The 
important concept of object rigidity (§4), and the mathematical tools necessary for its convenient implementation as a global 
search tree heuristic, is due to Faugeras and Hebert [5], while Oshima and Shirai [11] discuss the interesting feature of “root-
matches” which allows the determination of interesting start points for the search trees. 

4. Inexact matching of high level representations 
The present paragraph is devoted to the inexact matching of two high level 3D polyhedric representations. Given a scene and 
a reference PFRG we seek a list of promising matches M which can be both partial and inexact. For each of the matches M, 
we measure also the overall similarity as well as the transformation T the reference object would have to undergo such that it 
matches "best" the scene object (figure 4.1). 

Match M

Trans T

 
fig 4.1: the "matching" process: left the scene object and its PFRG, right the reference object and its PFRG 

4.1 Notations and definitions 
Scene and reference PFRGs are denoted with GS = (NS, AS) and GR = (NR, AR) respectively, where NS and NR stand for the 
respective node sets and AS and AR for the respective sets of arcs. A(NSm, NSn) and A(NRm, NRn ) stand for a non-directed 
arc interconnecting adjacent scene and reference nodes respectively. Finally, M(NS, NR) stands for an established 
correspondence between scene node NS and reference node NR M is a set of 1-1 node correspondences between NS and NR. 
With these notations, we can define the problem definition more precisely: 

 Given two planar face representation graphs (PFRGs) GS and GR, find the "best" set M of 1-1 scene-node / 
reference-node correspondences according to an overall "cost" function. 

Note that using this approach, the match is guided by the establishment of node-node correspondences and their respective 
dissimilarities. While arc-arc correspondences will be established implicitly where possible (inexact matching) and therefore 
will participate in the global 'cost'-function, missing nodes will neither be detected nor considered. 

4.2 A state space lattice for the search of the best match 
In order to find the "best" match between reference PFRG GR and scene PFRG GS, we apply a "best-first" search algorithm 
in a state-space lattice where each state Sk corresponds to a set of 1-1 node correspondences Mk. In our implementation, this 
match is represented by the core-node sets CRk = {.., NRi,..} and CSk = {.., NSj,.} resp. and the set of 1-1 correspondences 
Mk = {.., (NRi, NSj),..} of their nodes. Furthermore, each state Sk has an associated set of terminal nodes TRk resp. TSk. 
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figure 4.2: reference node set (left) and scene node set (right) 

These sets contain all the nodes which have at least one arc to any of the core nodes of the respective core node set. The 
remaining nodes are contained in the rest node sets RRk and RSk. Each state Sk of the search tree has an associated set of 
attributes: i) the overall cost of the match Mk, ii) the "best-fitting" transformation Tk and iii) the number of arcs inserted or 
deleted in order to obtain isomorphism. With the search strategy selected ("best-first"), the leaf state with the minimum 
overall cost is expanded first. Obviously, a non-restricted expansion of the search tree would lead to a non-affordable amount 
of computation. Therefore, we introduce a set of search tree pruning criteria. The most important ones will be discussed 
(§4.3), for a complete discussion see [10]. 

4.3 Search tree pruning criteria 

Connectivity condition 
The first search-tree pruning criterion, the connectivity condition, has already been introduced before: a sub-graph match can 
only be extended by pairs of terminal nodes. In the present design, this rule is particularly weak with respect to the rules 
introduced in previous work [3]. It allows for good flexibility in inexact matching while still limiting the expansion of the 
search tree. If ever the application of this rule would lead to multiple sub-graph matches, post-processing could help to 
resolve this problem (§4.5). 

Rigidity condition 
For common objects, it is straightforward to introduce the hypothesis of rigidity: hence, the angles between the surface 
normals are constant and invariant to rotation and translation. (While the approach is more general, the use of PFRGs limits 
us currently to rotations). We therefore determine for sub-graph matches Mk a "best fitting rotation" RotSk for the set of 
unitary normal vectors of the respective core node sets [5, 12]. Knowing the rotation RotSk, we can restrict the set of possible 
node matches (NTSm, NTRn) to the couples of nodes which fulfill the rigidity condition; the difference of orientation must be 
smaller than a given threshold:  |< ) (normal(NTSm), (RotSk (normal(NTRn )) )| < ThRot. 

Visibility condition 
With conventional data acquisition equipment, a single view of the scene is taken. Thus, visible faces have an orientation 
such  that the angle between the observation vector and the surface normals is smaller then π/2±ε. The transformation of the 
observation vector back to the reference space allows hence to prune the set of reference terminal nodes depending on the 
surface normal attributes. 

Neighbor match condition 
The candidate couple (NTRm, NTSn) is candidate for a new match if and only if there exist at least one adjacency A(NTRm, 
NCRi),  A(NTSn, NCSj) and a core-node correspondence (NCRi, NCSj) as elements of the previous match set Mk. This 
condition guarantees that the terminal nodes have adjacencies to at least one matched pair of core nodes: neighboring 
reference nodes will hence be matched with neighboring scene nodes. 

Cost conditions 
The transition of one state Sk in the search tree to a next state Si corresponds to the extension of the match Mk to match Mi by 
a new couple of nodes (NTRm, NTSn), modifying the overall matching cost of paragraph 4.4 by Δcost(Si, Sk). With the idea 
in mind that search branches which would lead to an important increment in the global cost should be discarded, this 
"modification-cost" can be used as an additional pruning condition. Moreover, particular similarity conditions can be 
established for each attribute individually. 

4.4 The cost function 
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In order to determine an overall cost function, the dissimilarities determined for each type of attribute and for structural 
differences are combined such that search-tree states of different levels, representing matches of different sizes, can be 
compared: the weighting must depend on the number of elements involved. 

 cost(Sk)  =   
α Σarea(Sk) + ε erotfit(Sk) 

number of nodes(Sk)    +  
β Σborder(Sk) + γ Ains(Sk) + δ Adel(Sk)

Amatch(Sk) + Ains(Sk) + Adel(Sk)    

figure 4.3: the cost function 
The cost function used is composed of two parts, i) the weighted sum of the accumulated dissimilarities of area of the 
matched surface patches Σarea(Sk) plus the mean squared rotation fitting error erotfit(Sk) divided by the number of matched 
nodes and  
ii) of an arc dissimilarity measure composed of the sum of the arc attribute dissimilarities Σborder(Sk), increased by a 
dissimilarity measure for inserted arcs (Ains) and deleted arcs (Adel) divided by the number of arcs involved (matched, 
inserted and  deleted). The weights α, β, γ, δ and ε have been determined heuristically by a series of experiments on real data. 
4.5 Postprocessing 
Postprocessing covers all the steps subsequent to the match necessary in order to complete the recognition task. Let us just 
mention the two most interesting ones among them: i) the combination of partial hypotheses and ii) the verification of the 
results at lower levels of abstraction  For further details refer to [10]. 

5. Results 

Determination of the weighing parameters 
In a first series of tests, the weighting factors for the overall cost have been determined. It showed up that for all of the 
subsequent experiments, a single, well chosen set of parameters was sufficient (α=0.05, β=0.04, γ=0.01, δ=0.01, ε=0.9). 
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figure 5.1: determination of the weighting parameters (test object "P" left and reference object "Pyramid2" right) 

Object recognition: single-object / single-reference 
The next tests have been conducted in order to check the selectivity achieved with the defined cost function. The results show 
that a system which uses exclusively surface orientations as attributes, e.g. using gaussian images, does not behave 
sufficiently well. With the use of the surface area attribute (corresponding to a representation using extended gaussian images 
EGIs [13]) and the border-length attribute, the selectivity becomes sufficient despite of the simplicity of the chosen 
representation. Obviously, both the surface area attribute and the border-length attribute are sensitive to occlusion. Therefore, 
a reliability measure should be introduced which allows to weigh the influence of the node matches and arc matches in the 
overall cost function. 
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figure 5.2: the first three hypotheses for the problem of figure 5.1 

Figure 5.2 shows from left to right the first three hypotheses obtained for a matching attempt between the scene object "P" 
(fig. 5.1, left) and the reference object "PYRAMID2" (fig 5.1, right). 
The first hypothesis is the correct one, the second and the third, having considerably higher costs, represent the matches made 
with the scene object rotated about the z-axis "one face left resp. right". The evolution of the cost, the number of node 
correspondences and the number of correct node correspondences are shown in figure 5.3. 
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figure 5.3: statistics for the first ten solutions for the problem of figure 5.1 

Object recognition and separation 
After a series of tests with single-object scenes, the more ambitious task of multiple-object scenes has been addressed. The 
PFRG of a scene "CP", showing a cube which occludes partially a pyramid, has been tested vs. the reference PFRGs 
"CUBE1" and "PYRAMID2". 
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fig 5.4: two compatible solutions: scene “CP” (center) vs. references "CUBE1" (left) and "PYRAMID2" (right) 

With the algorithm described before and a simple test of compatibility of the solutions, the desired result, represented in 
figure 5.4, has been obtained. The "best" set of compatible solutions contains the correct match between the reference object 
"CUBE1" and the part of the scene "CP" representing the cube and the reference object "PYRAMID2" with the part of the 
scene representing the pyramid. 
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Nevertheless, with our choice of high-level representation and correspondence search criteria, the reliability of the 
correspondences decreases rapidly in the case of partially occluded objects. The results of the match must be completed, 
either by subsequent (low-level) verification or by the use of richer data in both the high-level representation and the 
correspondence search criteria. 

6. Conclusions and outview 
In the present paper, we have presented a solution to the inexact high-level matching task in the context of 3D object 
recognition. Given two high level object representations in the form of attributed relational graphs, we extract the most 
promising (partial) matches so that we can establish hypotheses on the scene objects. The matching uses a similarity measure 
for the matched parts of both reference and scene objects as well as a transformation the reference object has to undergo such 
that it fits best the scene data, are determined. 
We treat the subject of graph matching as a tree-search problem, using a "best-first" search. The present work is particular in 
the sense that it uses a very weak rule for the tree expansion such that a wide spectrum of topological inexactitude can be 
accepted. Usually, this inexact matching feature must be payed heavily by an important increase of the computational 
complexity. Therefore, a number of criteria have been introduced which allow to prune the search tree efficiently. The most 
important condition we use is the rigidity condition. Despite of the good results obtained with this single condition, additional 
tree-pruning conditions based on the remaining graph attributes had to be added in order to deal with cases where the former 
condition is not sufficient, e.g. for man-made objects where perpendicular and parallel faces are common. 
The matching is subject to the structural and attributal similarity of the scene and reference objects. A final match is 
characterized by an overall similarity measure as well as by the geometrical transformation that leads best from the reference 
to the scene. Various experiments have shown good results obtained with the described algorithm, i) for object recognition 
with single object scenes and ii) for object recognition and object separation for multiple object scenes, including objects 
which occlude themselves mutually. 
As such, the present solution should be considered as a building block for a more elaborate recognition system that considers 
also , among other things, verification of the generated hypotheses at a lower level of description and object representation 
involving additional aspects like more complete descriptions of edges and surface patches. 
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