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Abstract 
This paper describes a powerful inexact matching algorithm that has been applied with success to high-level 3D-object 
representations in a 3D object recognition system. In a promising way, the algorithm combines several approaches proposed 
in the last couple of years: an extension to the backtrack strategies for inexact matching of attributed relational subgraphs, 
error-correction isomorphism, determination of local attribute similarity and global transformation fitting, features which are 
efficiently used for search-tree pruning. The algorithm was tested successfully in a series of experiments involving scenes 
with single and multiple objects. 

Index terms: 3D-object recognition, scene analysis, inexact subgraph matching, machine vision 

1. Introduction 
Vision is the most important manner for sighted humans to estimate shapes, to localize and recognize objects in the real 
world. Therefore, quite naturally, efforts have been made in the last couple of years to integrate similar facilities into 
automatic vision systems. Two typical examples of applications are assembly lines and robot vision. Solid results have been 
obtained for two-dimensional objects and for specifically defined problems in artificial, human-made environments. For 
three-dimensional objects in turn, the efforts made, up to now, have essentially shown the high complexity of the problem. 
Nevertheless, researchers are now in the position to test particular 3D-object recognition algorithms, to realize prototypes 
with limited features and use them in well-defined, relatively simple implementations. 

The problem 
The task of 3D-object recognition using machine vision can roughly be described as follows: 

 Given a scene containing one or more 3D objects and a library of reference objects, identify one (or more) of 
the 3D-scene objects either partially or completely with respect to the given reference library object's elements. 

A frame for an object recognition system 
This rough task definition gives rise to a frame for an object-recognition system, consisting of the following elements: 

i) Acquisition of rough 3D data and extraction of a convenient high-level object representation. 
ii) Matching of the acquired and extracted high-level representation with some reference or model representations, 

resulting in a list of hypotheses on the best correspondences. 
iii) Verification and classification of the resulting hypotheses, the selection of compatible partial results, the 

extraction of useful information on orientation, the localization of recognized elements , … 

rough 3D data resultscene high-level 
representation hypotheses

3D data acquisition preprocessing matching of high 
level representations postprocessing

object library

Figure 1.1: a frame for an object-recognition system 

Content 
In the present paper, we show a solution to the inexact high-level matching problem in the context of 3D-object recognition. 
Given two high-level object representations in the form of attributed relational graphs, we extract the most promising (partial) 
matches so that we can establish hypotheses on scene objects. The match of the two subparts of reference and scene objects is 
characterized by a similarity measure that indicates match quality and a transformation the reference object has to undergo so 
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that it fits scene data best . 
We treat the subject of graph matching as a tree-search problem, using a "best-first" search. The present work is distinctive in 
the sense that it uses a very weak rule for tree expansion in order that a wide spectrum of topological inexactitude can be 
accepted. Usually, this inexact matching feature requires an important increase of computational complexity. Therefore, 
criteria were introduced that efficiently enable pruning the search tree, the most important condition being rigidity. Despite of 
the sound results obtained with this single condition, additional tree-pruning conditions based on the remaining graph 
attributes had to be added in order to deal with cases where the rigidity condition is not sufficient, e.g., for man-made objects 
where perpendicular and parallel faces are common. 
Various experiments with the algorithm described show that convincing results can be obtained, i) for object recognition with 
single-object scenes and ii) for object recognition and object separation for multiple-object scenes, including objects which 
occlude themselves mutually. 

Outlines 
First, we describe the preprocessing applied to rough-scene data and create a high-level representation called PFRG (§2) that 
enables redefinition of the object-recognition problem as a (sub)graph matching problem. Next, we briefly analyze some 
characteristics of exact (sub)graph matching, an approach we consider too restrictive for a typical application. Before going 
into details of our algorithm, we rapidly present some of the related previous work (§4). Many of these ideas were integrated 
in our matching algorithm discussed precisely in paragraph 5. Moreover, some remarks on postprocessing are included. The 
remaining paragraphs are devoted to results (§6), concluding remarks and an overview on further subjects of interest. 

2. Acquisition of data and extraction of high-level representations 
In order to give a complete view of the environment for which the algorithm was developed, we quickly present the data-
acquisition device and the preprocessing applied (figure 2.1). 
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Figure 2.1: from 3D-data acquisition to a high-level representation: 

a) laser range finder, b) 2.5D depth map, c) region/border representation, d) attributed relational graph representation  

2.1 Data acquisition and preprocessing 
The input device is a laser range finder using light planes [6], delivering a large set of 3D measurements of the visible 
surfaces. A range-image segmentation process is used in order to approximate the 3D point set by surfaces in our 
implementation planar surfaces [7,8,9]. The resulting set of surface patches that represents visible scene-object surfaces, can 
now be expressed at a higher level of abstraction, e.g., in the form of attributed relational graphs (ARGs). These ARG 
representations are neither complete nor precise representations of the scene objects due to: occlusion, limited resolution of 
the acquisition device, preprocessing, the choice of attributes, … 

2.2 High-level representation: our choice 
Two constraints were specified for our problem: i) limitation to polyhedral objects and ii) use of a high-level representation 
based on planar surfaces. While both constraints do not modify the nature of important problems in 3D-object recognition, 
they significantly reduce the complexity of the implementation. We use a high-level representation called a planar face 
representation graph (PFRG), a special form of an ARG. Each node stands for an object's region, approximated by a planar 
surface patch and each arc for a neighborhood relation between two regions (table 2.2). The node attributes are the area and 
vector perpendicular to the represented surface. The only arc attribute is the border length between adjacent regions. 

  
 

 region + node attributes: surface area of the region
   normal vector of the region 
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 border + arc attribute:  border length  
 

Table 2.2: planar face representation graph PFRG 

2.3 PFRG preprocessing 
PFRGs of reference objects will be rather concise, PFRGs of acquired scene data are likely to be cluttered due to reasons 
mentioned before (§2.1). Hence, some simple algorithms were implemented who i) merge regions that are likely to have been 
separated and ii) which remove dummy regions, essentially the ones situated on the borders of real surfaces. Figure 2.3 shows 
schematically one of them, performing the removal of small border regions whose adjacencies are known but too small for 
proper determination of attributes "surface area" and "surface normal". Obviously, these algorithms depend on the actual 
range-image segmentation algorithms used and their details must therefore be discussed in the corresponding context [10]. 
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Figure 2.3: examples of "cluttering" on the scene object "Cube1" (left) and a preprocessing 

algorithm eliminating small border elements with nondeterminable attributes (right) 

2.4 Task redefinition 
Once the high-level representation and its relation to real-world data are defined, we can give a more exact task description: 

 Establish an ordered list of hypotheses on similar (sub)PFRGs, with both scene and reference objects 
represented in the form of PFRGs, while taking into account both structural and attributal similarities. 

Until now, task defining is rather general. We have not yet explained the type of graph matching we will do. The next 
paragraphs discuss this point. First, we briefly analyze exact graph matching, then refer to some promising related work and 
finally, present our selected approach in detail: inexact matching. 

3. Exact graph matching 
The process of 1-1 node matching of non-attributed graphs has a long history in mathematics; the tools are therefore well 
known for both graph matching (identical number of nodes) and subgraph matching (different number of nodes) [14]. The 
extension to attributed graphs can be done through introduction of similarity measurements. 
These methods are based on the assumption that all of the nodes and arcs of the smaller graph have their counterparts in the 
bigger graph: each node and each arc can be matched 1-1 to a node or arc respectively of the second graph (isomorphism). 
They can be implemented either with an "exhaustive-search" algorithm or as "back-track" searches where existing solutions 
are extended to bigger ones, considering some pruning criteria at each extension step [2,3]. 
It is clear that in a general case of 3D-object recognition, the assumption made above does not hold. Occlusion, shadowing, 
nonidealities of the data-acquisition equipment and of the preprocessing algorithms can lead to inaccurate high-level 
representations. Therefore, the success of "exact matching" approaches will be heavily limited. 
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Figure 3.1: scene object (left), partial reference object (middle) and an extract of a possible search tree (right) 

Figure 3.1 shows a simple example. For reasons explained before, the border between regions B and C of the scene object 
were not detected correctly, arc A(B,C) representing the adjacency of regions B and C is missing. An exact correspondence-
search algorithm, using a "backtrack" approach  and starting from the 1-1 node match M1 = {(A,1)} could be extended to 
M2 = {(A,1),(B,2)}. The attempt to match (C,3) would be rejected since the sub-graph ABC is nonisomorphic with respect to 
reference sub-graph 123. 
Even in this relatively simple situation, "exact matching" behaves in an insufficient way. The drawbacks of this method 
would have to be compensated by a subsequent recombination of small partial solutions. Therefore, a method covering 
"inexact matching" (and obviously also exact matching) has been investigated and implemented. 

4. Related work 
Many of the ideas implemented in our PFRG inexact matching algorithm come from or were triggered by work done in the 
last couple of years. 
In the field of exact graph matching, Ullmann [12] treated the subject of subgraph isomorphism. Tsai and Fu [1] established a 
first base for error-correcting isomorphic matching and it was continued by Eshra and Fu [2,3] in their backtrack-based 
inexact matching scheme using small sub-graphs called Basic Attributed Relational Graphs (BARGs). Shapiro's paper [4] on 
the use of metrics was very helpful for the determination of dissimilarities and their combination into a global cost measure. 
Oshima and Shirai [11] showed us the interesting feature of "root matches" that enables determination of interesting starting 
points for backtrack tree searches. Furthermore, they introduced reliability measurements for graph attributes. Finally, the 
important concept of object rigidity (§5) and interesting mathematical tools necessary for its convenient implementation as a 
global search tree heuristic are due to Faugeras and Hebert [5].  

5. Inexact matching of high-level representations 
The present paragraph is devoted to our algorithm for inexact matching of two high-level 3D polyhedral representations. 
Note that for object-recognition purposes, this matching step has to be repeated for each element of a set of reference objects. 
Given a scene and a reference PFRG, we look for a list of promising matches Mk which can be both partial and inexact. For 
each of the matches Mk, we also measure the overall similarity as well as transformation Tk that the reference object would 
have to undergo so that it fits "best" to the scene object (figure 5.1). 

Match Mk

Trans Tk

 
Figure 5.1: the "matching" process: left, the scene object and its PFRG; right, the reference object and its PFRG 
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5.1 Notations and definitions 
Scene and reference PFRGs are denoted with GS = (NS, AS) and GR = (NR, AR) respectively, where NS and NR stand for the 
respective node sets and AS and AR for the respective sets of arcs. A(NSm, NSn) and A(NRm, NRn ) stand for nondirected 
arcs interconnecting adjacent scene and reference nodes respectively. Finally, M(NS, NR) stands for an established 
correspondence between a scene node NS and a reference node NR. Mk is a set of 1-1 node correspondences M(NS, NR):  Mk 
= {…, M, …}. 
With these notations, we can express the problem definition more precisely: 

 Given two planar face representation graphs (PFRGs) GS and GR, find the "best" set Mk of 1-1 scene-node /  
reference-node correspondences according to an overall "cost" function. 

Note that using this approach, the matching process is guided by the establishment of node-node correspondences. While arc-
arc correspondences will be established implicitly where possible (inexact matching), and therefore will participate in the 
global "cost" function, missing nodes will neither be detected nor considered. 

5.2 State-Space lattice for the "best" match search  
In order to find the "best" match between reference PFRG GR and scene PFRG GS, we apply a "best-first" search algorithm 
in a state-space lattice where each state Sk corresponds to a set of 1-1 node correspondences Mk. In our implementation, this 
match is represented by the core-node sets CRk = {…, NRi, …} and CSk = {…, NSj, …} respectively and the set of 1-1 
correspondences Mk = {…, (NRi, NSj), …} of their nodes. 

 
RRk
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RSk

CSk

TSk

(NTRm,NTSn)

Mk

 
Figure 5.2: reference node set (left) and scene node set (right) 

Furthermore, each state Sk has an associated set of terminal nodes TRk resp. TSk. These sets contain all nodes which have at 
least one arc to any of the matched core nodes of the respective core-node set. The remaining nodes are contained in the rest-
node sets RRk and RSk respectively. Each state Sk of the search tree also has an associated set of attributes: 

 i) overall match cost Mk,  
ii) "best-fitting" transformation Tk and  
iii) number of arcs inserted or deleted to obtain a virtually isomorphic match. 

With the "best-first" search strategy selected, the leaf state with the minimum overall cost is expanded first. Obviously, a 
nonrestricted expansion of the search tree would lead to a nonaffordable amount of computation. Therefore, we introduce a 
set of search-tree pruning criteria. The most important ones will be presented, for details see [10]. 

5.3 Search-tree pruning criteria 

Connectivity condition 
The first search-tree pruning criterion, the connectivity condition, was already introduced implicitly: a subgraph match Mk 
can only be extended by couples of terminal nodes. With respect to the rules introduced in previous work [3], this one is 
particularly weak in the present design. It allows for good flexibility in inexact matching while still limiting the expansion of 
the search tree. If ever the application of this rule leads to multiple subgraph matches, postprocessing could help to 
compensate this problem (§5.5). 

Rigidity condition 
For common objects, it is straightforward to introduce the rigidity hypothesis: the angles between the surface normals are 
constant and invariant to rotation and translation. (While the approach is more general, the use of PFRGs limits us currently 
to rotations). We therefore determine for subgraph matches Mk "best fitting" rotations RotSk for the set of unitary normal 
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vectors of the respective core-node sets [5,12]. Knowing rotation RotSk, we can restrict the set of possible additional node 
matches M(NTSm, NTRn) to the couples of nodes that fulfill the rigidity condition; the orientation difference between a 
rotated reference-surface normal and the corresponding scene-surface normal must be smaller than a given threshold. 
Visibility condition 
With conventional data-acquisition equipment, a single view of the scene is taken. Thus, visible faces have an orientation so 
that the angle between the observation vector and surface normals is smaller than π/2±ε. Transformation of the scene-
observation vector back to the reference space hence enables pruning the set of reference terminal nodes according to their 
surface normals. 

Neighbor match condition 
The candidate couple (NTRm, NTSn) of terminal nodes is a candidate for a new match if and only if there exists at least one 
adjacency A(NTRm, NCRi), one adjacency A(NTSn, NCSj) and a core-node correspondence (NCRi, NCSj) as elements of 
previous match set Mk. This condition guarantees that terminal nodes have adjacencies to at least one matched pair of core-
nodes: neighboring reference-nodes will be matched with neighboring scene nodes. 
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Cost conditions 
The transition of one state Sk in the search tree to a next state Si corresponds to the extension of the match Mk to match Mi by 
a new couple of nodes (NTRm, NTSn), modifying the overall matching cost of paragraph 5.4 by Δcost(Si, Sk). With the idea 
in mind that search branches - that would lead to an important increase in the global cost - should be discarded, this 
"modification cost" can be used as an additional pruning condition. Moreover, particular similarity conditions can be 
individually established for each attribute. 

5.4 Cost function 
In order to determine an overall cost function, dissimilarities determined for each type of attribute and for structural 
differences are combined so that search-tree states of different levels, representing matches of different sizes, can be 
compared: weighting must depend on the number of elements involved. 

  

 cost(Sk)  =   Error!+ ε erotfit(Sk) ,number of nodes(Sk))  +  Error!  
 

Figure 5.3: cost function 
Cost function is composed of two parts. First, the weighted sum of accumulated dissimilarities of the area of the matched 
surface patches Σarea(Sk) plus the mean squared rotation fitting error erotfit(Sk) divided by the number of matched nodes. The 
second part consists of an arc-dissimilarity measure: the sum of arc attribute dissimilarities Σborder(Sk), increased by a 
dissimilarity measure for inserted arcs (Ains) and deleted arcs (Adel) divided by the number of arcs involved (matched, 
inserted and deleted). The weights α, β, γ, δ and ε have been determined heuristically by a series of experiments on real data. 

5.5 Postprocessing 
Postprocessing, an essential step in the 3D object recognition process, covers all the steps subsequent to the match, necessary 
to complete the recognition task. Let us just mention the two most interesting ones among them: 

 i) verification of resulting hypotheses and  
ii) combination of partial matches. 

Verification 
Match hypotheses should be verified before accepted as solutions, using information that has not been exploited for the match 
setup. In our implementation, the pruning process takes into account all elements of the high-level representation used; it is 
thus necessary to perform the verification task at a lower level of data abstraction. 
Compatible solutions 
Due to the connectivity condition of paragraph 5.3, the final match between a single scene object and a reference object can 
be composed of more than one partial match from the list of (verified) solutions. Obviously, they have to fulfill some 
compatibility conditions, e.g., the rotations fitted must be very similar, and each element of both scene and reference PFRGs 
appears just once. If more than one object is involved, the situation is even more complicated since a single-reference object 
could have more than one counterpart in the scene. This subject needs further discussion in a wider context. 

6. Experiments and results 
Weighting parameters determination 
In a first series of tests, weighting factors for the overall cost were determined. It showed up that for all subsequent 
experiments, a single, well-chosen set of parameters was sufficient (α=0.05, β=0.04, γ=0.01, δ=0.01, ε=0.9). 
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Figure 6.1: weighting parameters determination (test object "P" left, and reference object "Pyramid2" right) 
Cost function selectivity  
The following tests were run in order to check selectivity achieved with defined cost function. Results show that a system that 
exclusively uses surface orientations as attributes, e.g., in the form of gaussian images, does not behave sufficiently well. 
With the use of the surface-area attribute corresponding to a representation of the form of extended gaussian images EGIs 
[13], and the border-length attribute, selectivity becomes sufficient despite simplicity of the chosen representation. 
Obviously, both the surface-area attribute and the border-length attribute are sensitive to occlusion. Therefore, a reliability 
measure should be introduced accordingly that enables weighting the influence of the node and arc matches in the overall 
cost function [11]. 
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Figure 6.2: the first three hypotheses for the problem of figure 6.1 

Figure 6.2 shows an example for good selectivity. From left to right, the first three hypotheses obtained for a matching 
attempt between scene object "P" and the reference object "Pyramid2" are presented. 
The first hypothesis is the correct one, the second and the third - having considerably higher costs - represent matches made 
with the scene object rotated about the z-axis "one face left and right", respectively. Cost evolution the number of node 
correspondences and correct node correspondences are shown in figure 6.3. 
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Figure 6.3: statistics for the first ten solutions for the problem of figure 6.1 
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Figure 6.4: single-object recognition: test object "P" (middle), reference objects "Cube1" (left) and "Pyramid2" (right) 

Next, the initial problem of 3D object recognition is dealt with: a single 3D-scene object is to be recognized with respect to a 
set of reference objects. Figure 6.4 shows a simple example: scene object "P" (middle) was tested against the two reference 
objects, "Cube1" (left) and "Pyramid2" (right). Ordering the merged set of hypotheses for both reference objects leads to a 
list partially shown in figure 6.5. 
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Figure 6.5: the first three hypotheses out of the merged set for the problem of figure 6.4 

For the first ten hypotheses found, the match between scene object "P" and reference object "Pyramid2" always delivers a 
lower global cost than the match with the second reference object "Cube1": the algorithm behaves as expected. 

Object recognition and object separation 
The more ambitious task of object recognition in multiple-object scenes was also worked out. The PFRG of a scene "CP", 
showing a cube that partially occludes a pyramid, was tested vs. the reference PFRGs "Cube1" and "Pyramid2". 
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Figure 6.6: two compatible solutions: scene “CP” (center) vs. references "Cube1" (left) and "Pyramid2" (right) 

With the algorithm described before, and a simple test of solution compatibility, the desired result, represented in figure 6.6, 
was obtained. The "best" set of compatible solutions contains the correct match between reference object "Cube1" and the 
part of scene "CP" representing the cube and the reference object "Pyramid2" with the part of the scene representing the 
pyramid. 
Nevertheless, with our choice of high-level representation and correspondence-search criteria, the reliability of the 
correspondences decreases, in particular for the partially occluded objects. Match results must be completed, either by 
subsequent (low-level) verification or by the use of richer data in both the high-level representation and the correspondence-
search criteria. 

7. Conclusions and overview 
In the present paper, we have shown a solution to the inexact high-level matching problem in the context of 3D-object 
recognition. Given two high-level object representations in the form of attributed relational graphs, we extract the most 
promising (partial) matches so that we can set up hypotheses on the scene objects. The match of the two subparts of reference 
and scene objects is characterized by a similarity measure that indicates match quality and a transformation - the geometrical 
rotation the reference object has to undergo so that it fits the scene data best. 
We treat the subject of graph matching as a tree-search problem, using a "best-first" search. The present work is distinctive in 
the sense that it uses a very weak rule for tree expansion so that a wide spectrum of topological inexactitude can be accepted. 
Usually, this inexact matching feature requires an important increase of computational complexity. Therefore, criteria were 
introduced that enable pruning the search tree efficiently. The most important condition we use is rigidity. Despite fair results 
obtained with it, additional tree-pruning conditions based on the remaining graph attributes had to be added in order to deal 
with cases where the rigidity condition is not sufficient, e.g., for man-made objects where perpendicular and parallel faces are 
common. 
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A final match, consisting of a set of 1-1 node matches, is characterized by an overall similarity measure as well as by the 
geometrical transformation that best maps a reference object to the scene. Various experiments show sound results obtained 
with the described algorithm, i) for object recognition with single-object scenes and ii) for object recognition and object 
separation for multiple-object scenes, including objects which occlude themselves mutually. 
Finally, the presented algorithm should not be considered a complete solution. Rather it should be considered as a building 
block for a more elaborate recognition system that also considers, among other things, verification of the generated 
hypotheses at a lower description level. A more elaborate system would also include object representations using additional 
information, e.g., descriptions of edges and surface shape. 
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