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Abstract

The subject of this paper is speaker recognition, which aims at asserting the iden-
tity of people on the basis of their voice only. Several techniques are already avail-
able; our contribution is to be found in the investigation of features new to this do-
main, named residue of the linear predictive coding analysis. OQur experiments in
text-independent mode show that the results obtained by using these features are as
good as those obtained by some other classical technique making use of the pitch,
while requiring less fine tuning of parameters; hence they can be considered more
appealing, because of a more direct implementation.

Introduction

The identity of people can manifest itself
through many channels; among them one can
find body aspect, personality traits, finger-
prints, etc. The aim of speaker recognition is
to use voice as only basis for guessing the
identity of the talker.

Several techniques are already available
{3, 4, 9, 14, 20, 25, 28]; some of these, named
text-dependent, take advantage of speaker co-
operation by making use of a password [2, 7,
18, 19, 22]. In the training phase, the speaker
teaches the machine his very own way of pro-
nouncing a fixed sentence; in the recognition
phase, the actual pronunciation of the pass-
word is matched against the learned one, and
a score is established which gives the similar-
ity of the two sentences. A threshold decides if
they are issued from the same speaker or not.
This class of techniques proves to be the most
efficient and the most constrained at the same
time.

The other class of techniques, named text-
independent, do not make use of the signal's
near-term temporal evolution. Long-term
statistics of the speaker's voice are computed
instead, and the matching process is based
upon these statistics [5, 6, 8]. The user has
more freedom at the cost of some loss of effi-
ciency. A very relevant aspect of this class of
techniques is the proper choice of features to
be used [1]. Ideally they should:

1) occur naturally and frequently in nor-

mal speech,
ii) be easily measurable,

iii) vary as much as possible among speak-
ers, but be as consistent as possible for
each speaker,

iv) not change over time or be affected by
speaker's health,

v) not be affected by reasonable back-
ground noise, nor be dependent on spe-
cific transmission characteristics,

vi) not be modifiable by conscious effort of
the speaker, or at least, be unlikely to
be affected by attempts to disguise the
voice.

Until now, much attention has been paid
to features obtained through the linear pre-
diction analysis of speech. This kind of analy-
sis is frame-based; it transforms the input
signal into a set of three outputs, sufficient to
exactly reconstruct each frame of the signal.
These are:

i) a P-component vector named the linear

prediction coefficients (LPC),

ii) a scalar gain factor,

iii) a time signal named excitation, or
equivalently, residue.

The LPC have been the most extensively
studied of these features, particularly in a
transformed version akin to the real cepstrum,
considered to be a form well adapted to speech
processing (speaker as well as speech recogni-
tion); less attention has been paid to the exci-
tation. We conjecture however that each
speaker has his own and possibly characteris-
tic residue, in which we hope to find clues
which are not correlated with the standard
techniques. In fact, a good reason for consider-
ing the excitation is that every bit of informa-



tion relevant to speaker recognition may be
shared not only by the LPC and the gain fac-
tor, but also by the excitation. We want to re-
trieve this information hidden within the
residue part, and we speculate that the resul-
tant orthogonality with the LPC will allow to
enhance the overall efficiency of a speaker
recognition system which would make simul-
taneous use of both techniques.

Further, the residue satisfies some of the
basic requirements for a "good" feature to try,
as itis:

i) available at any time,

ii) easily measured and uniquely defined;
no parametrization is required,

iii) independent of any linear transmission
characteristics, since these are already
reflected in the LPC.

In this paper, we will present our attempts
to use the residue as main feature for text-in-
dependent speaker recognition. We will first
briefly review the actual way of computing
this residue, then we will discuss some conve-
nient way for its representation. Next, two dif-
ferent techniques for its exploitation will be
presented. Finally, we will compare our re-
sults to those of a third experiment, based on
speaker's F0. A conclusion will put an end to
this paper.

Residue extraction

We will use a speech production model
which is very common in speech processing
domain. It consists of an all-pole filter driven
by an excitation (residue) part and scaled by a
gain factor. The all-pole filter simulates the
vocal tract, and the excitation the vocal folds.
For analysis, the excitation is considered to be
of minimal energy (which is in some sense
equivalent to be flat spectrum). The normal-
ized all-pole filter coefficients a(i) are then
computed according to this criterion. In short,
if s is the signal, N the window length, P the
analysis order and p a preemphasis coeffi-
cient, then the Levinson algorithm solves for
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where the biased autocorrelation R(i) is
N-1
RG) = EOb(n)-b(n-i)

n=ip

ie[0,P]

where the Bartlett windowed signal b is
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The residue u is the signal which would
exactly generate the speech signal s if it were
submitted to the all-pole filter, up to a scale
factor G. In fact we have
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hence, after windowing, the residue becomes
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Residue representation

For a classical voice coding application, it
is advantageous to describe the residue u as
belonging to one of two states, namely voiced
or unvoiced. The latter one is characterized by
a noise-like structure, and a random generator
can be used to approximate u for speech syn-
thesis. The first one is characterized by pulses
corresponding to vocal folds closures or open-
ings, and a comb signal can be used whose
Dirac spikes are spaced by a time interval cor-
responding to the pitch period. Finally, a state
(voiced, unvoiced) and a scalar (F0) are some-
times considered sufficient to encode u for
such an application.

However, the voice quality obtained may
be still enhanced by the use of a technique
named multipulse excited linear predictive
coding, where the coarse residue description
(state, F0) is replaced by some frame depen-
dent short excitation pattern, selected among
many candidates in a codebook, and repeated
with pitch period over the whole frame [10,
171. The description becomes (excitation code-
book entry, F0). The fact that an enhancement
is made possible by this technique buttresses
our guess that some valuable information lays
hidden within the residue.

Now, the literature on speaker recognition
abounds in cases where the LPC only are em-
phasized, the residue being simply put aside,
if ever mentioned. The reason is that a great
part of the speech signal's information content
is already stored in the a(i), as these coeffi-



cients are used with success by virtually every
study on speech or speaker recognition [7, 8,
13, 15, 16, 18, 19, 20, 24, 26, 27, 29]. A con-
trario, we want to examine the excitation itself
in order to discover there the speaker charac-
terizing information which may not be in-
cluded in the a(i), if any. First of all, we have
to find a representation of the residue finer
than (state, F0), and more handy than
(excitation codebook entry, F0).

A matter which has to be considered is the
framing process, which comes in two flavors,
namely pitch synchronous or pitch asyn-
- chronous. In the first case, each voiced frame
is synchronized with pitch epoches, hence such
for the residue. In the other case, which is our
working paradigm, the synchronization is lost.
It follows that we have to find a way to reject
any effect dependent on the linear phase of the
residue. We decide indeed to simply get rid of
any phase at all, by transforming u into its
power spectrum U

N-1 nk
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where j=V-1, |.| stands for the complex norm
of its argument, and where the duration of u
has been limited to the part driven only by s
(or more to say, its windowed counterpart b).

But, as mentioned above, the spectrum of
u tends to be the most flat possible, up to a
spectral tilt governed by the preemphasis fac-
tor y; this means that the values taken by U
are not of direct interest. Therefore we go one
step further and take v the log spectrum of U
as our final representation for u, in a manner
equivalent to the real cepstrum of a signal

N1 nk
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where almost half of the values (N/2-1) are re-
dundant and may be dropped, due to symme-
tries in U and v.

Finally, we are left with a representation
of the residue which highlights its periodici-
ties, while forgetting about its phase. The
main difference between an F0 single scalar
and this (N/2+1)-component vector is that ev-
ery periodicity is taken into account, not just
the fundamental one. For example, our
residue representation should allow us to ex-
tract the speech signal state, and if voiced,
should allow us to tell if the pitch is regular or
not within a given frame.

Experiment setup

We have a set of ten speakers (one female,
nine males) who produced each a set of eight
utterances of 15 s duration, for a total of
eighty utterances and 1200 s. The acquisition
has taken place in a normal office room envi-
ronment, within a single session. There were
no two same sentences, so we can pretend to
text independence; but they were all built
with the same set of twenty randomized
french digits, none of them being present twice
in any single utterance. This speech has been
low-pass filtered at 3.4 kHz, 48 dB/oct, and
sampled at 8 kHz. The frame duration has
been set to 30 ms (N=240), with a frame step
of 10 ms. The preemphasis factor is 1=0.95,
and the LPC order is P=14. No speech/silence
detection has been used, which means that ev-
ery frame is taken into account, even if it is
actually mere background noise.

We select the leave-one-out kind of exper-
iment as way of error rate estimation; that is,
we select an utterance as reference and then
match every other utterance against this ref-
erence. Hence, we can make a total of 560 in-
tra-speaker tests and 5760 inter-speaker tests.
The resulting efficiency estimation is given in
term of equal error rate for a verification task,
where each of the eighty references has its
own a posteriori threshold.

Average residue

The first experiment we will do is very
simple. The basic idea is that each speaker
has his own modus operandi for the genera-
tion of the excitation signal u, and further that
it stays stable within time. By this we mean
for example that a talker who would show a
wide F0 range for a given utterance, would
also show this behavior for any other utter-
ance. According to this stationarity hypothe-
sis, we compute a vector V representing the
value of v averaged over the whole utterance
duration

T-1

1
V=rm Z v@E)
T t=0

where T is the number of frames of the given
utterance and v(¢) is the residue cepstrum at
frame ¢£.

One can see below a plot of two superim-
posed curves V, corresponding respectively to
the speaker labeled 0 and the speaker 1. The
peaks of the two curves can easily be sepa-
rated by the naked eye, in a subjective com-
parison process.



Graph 1l: Two different average residues.

The dark curve corresponds to V of one of the
eight utterances avallable for the speaker la-
beled 0, while the light curve corresponds to
some V for the speaker labeled 1. The horizontal
axis 1s the periodicity; the vertical axis de-
notes the values taken by V.

In order to make an objective comparison
of two V, we choose to compute a distance be-
longing to the class of Mahalanobis distances
[12]

dM = V (V-V). MV V)T

where M stands for the inverse covariance
matrix of all the V. However, we introduce
some simplification by deciding a priori not to
take into account the very first component of
V, which only codes for the mean log power of
u, and by considering the V components as un-
correlated. Finally, we let M be the unit ma-
trix with its first element put to zero. Our dis-
tance becomes indeed equivalent to a very
classical distance

AV, v = V-V

where |-| stands for the Euclidean norm, and
where the vectors have lost their first compo-
nent. '

The results of this experiment are tabu-
lated in figure 1 and figure 2, where each col-
umn collects the references per speaker, and
each line collects the tests per speaker. The
numbers given do reflect the errors made over
64 tests, respectively 56 tests for the intra-
speaker case.
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Figure 1: Inter-speaker confusion matrix.
Number of errors made while comparing any ut-
terance from speaker X (column, reference) with
any utterance from speaker Y (row, test), over a
corpus of 64 tries pro entry. The resulting av-
erage equal error-rate is e=9.3% for the average
residue experiment
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Figure 2: Intra-speaker confusion matrix.
Number of errors made while comparing all ut-
terances from speaker X with themselves, auto-
test excluded, over a corpus of 56 tries pro
entry. The resulting average equal error-rate is
e=9.1% for the average residue experiment

Finally, the global equal error rate of the
technique we just presented lays around 9.2%.
This result has been obtained from data ac-
quired in a single session, with a posteriori set
thresholds, and where these thresholds are
reference dependent, that is, even more than
speaker dependent.

Vector quantized residue

In this section, we apply to the residue a
technique which is quite popular in the case of
text-independent speaker recognition based on
LPC cepstrum features {11, 13, 15, 16, 24, 26,
27, 29]. We want to see if this technique does
also fit our present case.

The basic idea is to construct a personal
codebook adapted for each speaker, in such a
way that any part of the speech he produces is
ever close to some entry in his own codebook,
while being as far as possible from the entries
of everybody else's codebook. Once obtained,
the speaker's codebook can be used to vector
quantize the speech to be analyzed; the raw
version and the quantized version are then
compared. If they are issued from the same
speaker, then they will tend to be close to one
another. If not, their distance will be greater,
as no entry in the considered codebook has a
good match to the analyzed speech.

The codebook construction is a classifica-
tion problem. We select a clustering technique
named K-means for its solution, where the
chosen intra as well as inter-class distance is
the same as in the first section, and where the
prototype for each class is its gravity center.
The number of classes is set to K=32. Each ut-
terance gives rise to a single codebook, so that
we have several codebooks per speaker in
order to be able to make enough intra-speaker
tests.

The speech is then processed, and the er-
ror of vector quantization is computed accord-



ing to the distance measure presented at the
preceding section. The accumulation of this
error along the whole utterance leads to a
scalar dVQ, compared to a threshold for the
final decision of authentication or of reject. We
have

1 T-1
dvQ =7 tzoﬂv(t)-VQ(v(t))"

where the quantized vector VQ(v) is

K-1
VW) = w (argmin llv-w(k)ﬂ)
k=0

where {(w(k) | ke[0, K[} is the set of vectors
found in the codebook, and where argmin(-)
returns the argument which minimizes its
operand.

The results of this experiment are given at
figures 3 and 4, in the same format as for the
preceding section.
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Figure 3: Inter-speaker confusion matrix.
Number of errors made while comparing any ut-—
terance from speaker X (column, reference}) with
any utterance from speaker Y (row, test), over a
corpus of 64 tries pro entry. The resulting av-
erage equal error-rate 1s e=22.7% for the vector
quantized residue experiment
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Figure 5: Intra-speaker confusion matrix.
Number of errors made while comparing all ut-
terances from speaker X with themselves, auto-
test excluded, over a corpus of 56 tries pro
entry. The resulting average equal error-rate 1s
e=23.7% for the vector quantized residue ex-
periment

Finally, the resulting global equal error
rate lays around 23.2%, which is much worse
than the result obtained with the technique
based upon the average residue analysis.

We explain this bad result by a possible
mismatch between the analyzed features and
the clustering technique, because we find that
roughly more than 50% of the signal is repre-
sented by as few as 25% of codebook entries,
while less than 25% of the signal requires as

much as 50% of codebook entries. However, we
decided not to undertake the systematic explo-
ration of parameter configurations necessary
to optimize our results.

Average F0

As a control experiment, we will compute
the mean value <F0> of the pitch of each ut-
terance, and use it as feature for speaker veri-
fication. To this purpose, we make use of a
technique belonging to the class of autocorre-
lation analysis, which allows us to reject un-
voiced frames if their autocorrelation peak is
not high enough. The doubled pitch problem is
solved by some median filter applied to pitch
values before averaging, while the distur-
bances brought by high frequency noise are al-
leviated by the preliminary application of a
low-pass filter to the speech signal and by cen-
ter-clipping.

The feature measured then simply reads
T-1

<FO> = % 2 Fo()
t=0

where FO(¢) is the instantaneous pitch of each
frame, if it exists. If undefined, then the actual
frame is dropped and the number of frames T
is reduced by one.

The results of this experiment are given at
figures 5 and 6, in the same format as for the
preceding sections.
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Figure 5: Inter-speaker confusion matrix.
Number of errors made while comparing any ut-
terance from speaker X (column, reference) with
any utterance from speaker Y (row, test), over a
corpus of 64 tries pro entry. The resulting av-
erage equal error-rate is e=10.2% for the F0
experiment B
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Figure 6: Intra-speaker confusion matrix.
Number of errors made while comparing all ut-
terances from speaker X with themselves, auto-
test excluded, over a corpus of 56 tries pro
entry. The resulting average equal error-rate is
e=9.3% for the FO0 experiment



Finally, the resulting global equal error
rate lays around 9.7%, which is quite close to
the result obtained by the average residue
analysis.

Discussion

If the efficiency of the techniques based
upon the whole excitation signal or upon the
pitch is about the same (at least for the aver-
age residue) then the next point is to know
wether the nature of errors is different be-
tween these techniques. Put in other terms,
does the information stored in the whole vec-
tor v differ from what one can find in the sin-
gle scalar F0?

The answer to this question has to be
found in speaker to speaker comparisons. If
the success of each considered technique is
about the same for each selected pair, then it
is a clue, although not a proof, that the tech-
niques are indeed equivalent. If not, then
these techniques may be combined together in
order to achieve a higher efficiency [9, 21].

We want to take into account every possi-
ble pair; hence we use the normalized cross-
correlation coefficient y as a similarity mea-
sure. Basically, if x and y are two signals, then

_<lx-<x3)- (v - <y>)>
Y= -

where <x>, <y> and ox, oy are respectively the
mean and the square root of the variance of
the signals. The values taken by y stay in the
[-1, 1] range; a zero value means that the two
signals are not correlated. We tabulate the re-
sult of the comparisons in figures 7 and 8,
where each entry gives the normalized cross-
correlation coefficient between the errors
made by each presented technique.

y RSD VQ RSD FO

RSD 1.00 0 [
VQ RSD 0.33 1.00 0

FO 0.77 0.32 1.00

Figure 7: Inter—-speaker correlation matrix.
Normallzed cross-correlation coefficient between
the three techniques considered in this paper.
RSD stands for residue, VQ RSD stands for ac-
cumulation of residue vector quantization error,
and F0 stands for pitch.

¥ RSD VQ RSD FO

RSD 1.00 0 [

VQ RSD 0.52 1.00 0
FO 0.62 0.48 1.00

Figure 8: Intra-speaker correlation matrix.

Normalized cross-correlation coefficlent between
the three techniques considered 1in this paper.
RSD stands for residue, VQ RSD stands for ac-

cumulation of residue vector quantization error,
and F0 stands for pitch.

Finally, one can see that the correlations
are positive and far from 0.0, which means
that the behavior of the techniques considered
here is not very different with respect to
speaker recognition.

Conclusion

In this paper, we employed the residue as
a new feature for speaker recognition. We first
tried to find its convenient representation;
then we made some experiments with two well
known techniques used in text-independent
mode. One of these, related to vector quantiza-
tion, showed not very successful; it may need
either a better tuning of the parameters, or a
better adapted representation of the features
in order to give good results. The other, re-
lated to long-term averaging, has to be com-
pared to a control experiment based on the
speaker's pitch, which gives close results while
needing a higher number of parameters to
tune.

The average residue and the pitch tech-
nique both depend on a window length N; (P,
i) are the only additional parameters for the
technique based on the average residue. For
its part, the pitch technique we made use of
needs a tuning at least of the low-pass filter
order and characteristic, of the voicing deci-
sion procedure, of the center-clipping proce-
dure, of the autocorrelation peak-picking pro-
cedure and of the median filter order.

When it may be more appealing to look for
optimization in a smaller parameter space,
one has to remember that the feature ana-
lyzed is still a (N/2+1)-component vector, as
compared to the F0 single scalar. However,
whatever one can find in the residue is by def-
inition linearly independent of the results ob-
tained by the analysis of the LPC, up to order
P. This independency is not as much explicit
for the techniques based on the pitch. Thus, by
a proper balance of the P order, one can hope
to divide the speaker-dependent information
between the LPC and the residue, which may
then both yield very good candidates to be
combined together. ,

Finally, one should not forget the role of
the prediction gain, which basically encodes
the speech or silence state. Our future work
will be the attempt to integrate all the three
outputs of the linear prediction analysis,
repectively LPC, residue and gain, into one
single system for text-independent speaker
recognition.
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