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Abstract

This paper is a contribution to the behavioural approach to navigation in robotics. The behavioural
rather than functional decomposition of the robot task allows an easier development of separate
modules because of their higher degree of mutual independence and therefore offers simpler system
design. This paper presents two vision-based behaviours as examples of typical behaviours for the
robot navigation task. Named going toward and going to, the two behaviours make use of vision to
move the robot toward visible landmarks. Each of it represents a feedback control loop across
actuators, the robot environment, the vision system and the controller. Each is described to some

extent both in its principle and implementation.

1. Introduction

The behavioural approach for robot navigation
is inspired by the animal world in which
elementary behaviours can be observed. A
behaviour is an action activated by a fixed
stimulus and maintained as long as this one
exists. A simple example is given by a bee:
despite a poor visual system (the resolution is
approximately 1/60 in comparison with the
human one) it easily navigates to and from its
hive. In fig. 1.1 the path of the bee could be,
for example, to follow the fence and, when the
hive is near enough, to go toward it. These two
actions are basic behaviours which stimuli are
the fence for the first one and the hive for the
second one. Other behaviours based on vision
can be inspired by this simple example: avoid
obstacle, turn angle, ... [5][6].

"going toward" hive

Py

fig.1.1: bee navigation.

The behaviours form a set of partial navigation
solutions, each one related to a specific input
data.

In the reminder of this paper we present the
design and implementation of two vision-based
behaviours, namely going toward and going to.

2. Mobile robot and behavioural
navigation

Behaviours as independent functions

Robot navigation is decomposed into
behaviours, with interaction between them,
rather than into functions. A direct advantage of
such a solution is the development of the
behaviours as independent units. Apart from
some interaction constraints, the developer
does not have to care about the nature of other
behaviours. Each of these is a separate process
which activation merely depends on the
presence or absence of the stimulus. One can
divide the system in hierarchical levels:

0: low-level functions: actuators (robot)
and sensors.

1: modules: move, rotate (robot),
landmark-following (vision).

2: behaviours: going toward, going
along (vision).

3:  behaviour management in terms of
goals to be reached.

Note that inside level 2 itself, behaviours can
be composed of other behaviours.

A behaviour uses all the inferior levels. The
going toward behaviour, for example,



supposes a vision system capable of following
a landmark in the scene. It will also use the
low-level functions controlling the actuators, in
order to regulate the robot movements with the
observed position of the landmark.

Behaviours and vision

There is a distinction between an external and
an internal behaviour. The first one (fig.2.1.i)
performs an action within a feedback loop
across the robot environment, while the second
updates the robot knowledge from sensor data
(fig.2.1.ii).
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fig.2.1: a behaviour can be either i)
external or ii) internal.

In our case the behaviour is based on vision.
The stimulus is a 0-dimensional visual
primitive representing a landmark in the scene.
The scene is observed by a camera. The
landmark becomes then a particle on the
camera image, which mass center defines the
sign pattern (SP).

The behaviour action consists of moving the
robot by controlling its actuators. The vision
system is used to regulate the robot movements
with the particle position on the camera image.

Robot model and scene

The  environment of the robot is a scene
composed by a planar ground, walls and
different obstacles (see fig.2.2). The robot is
vertical and its movements are horizontal. The
camera is fixed on the top of the robot and
looking forward. Landmarks are spread in the
scene.

® @ landmark

fig.2.2: robot environment.

The robot actuators execute the rotation and
forward commands within error margins, that
are estimated to be 1% of the command value.

3. Two vision-based behaviours
Going toward behaviour

Our first basic vision-based behaviour is
external: it moves the robot in the direction of a
landmark placed in front of it. The robot path
will be a kind of zigzag line, centred on the axis
going from start position (when the behaviour
begins) to the landmark.
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fig.3.1: Robot movements are
performed within some error
margins, resulting in a zigzag path.



Looking at fig.3.1 one can see that at point P,
the particle is outside an X-margin defined
around the image center. The step after P will
be a rotation. Note that the x axis (image plane)
is parallel to the ground.

The optical axis determines the direction in
which the robot will move, whereas the robot-
to-landmark axis determines the path the robot
should follow. The angle between the two axis
is 0. When 0 is 0, these are superimposed and
the robot is aligned on the landmark. In fact,
the robot is supposed aligned when 0 is smaller
than (or equal to) a margin angle:

aligned when lo| < 0z

On the camera image, the robot-to-landmark
axis intersects the image plane at the particle
mass center, whereas the optical axis intersects
the image plane at its origin.

At this points one can simplify the problem
knowing that the robot is moving in a planar
environment with a fixed camera, resulting in
only horizontal movements of the particle on
the image. We will further only consider the
horizontal projection of the particle, described
by X. The margin angle corresponds to X on
the image. We have

tan(0) = o-X

which gives a relation between the observed
position of the particle and the angle between
the optical axis and the robot-to target axis.

The aligned condition becomes then

aligned when |X | <2

Thus, the going toward behaviour uses
rotations and forward commands. These are
performed by the module that controls the
actuators, within some error margins. The
optical axis will not coincide with the robot-
landmark axis after the robot has advanced
some distance, requiring a re-alignment on the
landmark. This is done by rotating the robot,
so that X falls again into the Z-margins.

The alignment problem is solved by doing a
recursive correction of the rotation angle
commands sent to the robot (see fig.3.2). The
result is a sequence of rotations more and more
accurate.

09 := arctan(og-X);
while X; outside 2-margins do
if (Xj.1 - X;)#0 then
o := tan(8;)/(Xi-1 - Xo;
0; := arctan(oj -Xj);
rotate(0; );

where: Xj: horizontal projection of the
particle.

0; : angle for the robot to be
rotated.

o; : recursive coefficient.

fig.3.2: alignment algorithm.

The value oy is obtained by

og =

| —

where the focal length f is roughly
approximating by some calibration
measurements.

Supposing the landmark is visible (the stimulus
is active), the going toward algorithm looks
like:

@ Align robot on particle;
® Loop.
® Loop while X is inside X-margins.
® Move forward;
(the robot moves in the landmark direction).
@ Align robot on landmark;

Going to behaviour

Our second vision-based behaviour is an
extension of the going toward behaviour, that
uses triangulation to estimate the distance to the
landmark and stops its movement when

d<dg

where d : current robot to landmark
distance.
d : distance for stopping.

The distance is given by a triangulation-based
method needing two observations of the same
landmark. This can be done by performing a
parallaxial movement with respect to the
landmark (see fig.3.4) [1][3].
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fig.3.4: parallax movement and
distance estimation.

The parallax movement is performed along an
axis, which describes an angle 6, with the
robot-to-landmark axis. The travelled distance
is 1 (measured by the robot odometers). At
point I (after parallax movement) two image
positions, X, and Xj, are known and
determine the landmark position ¢ in the
ground plane:

X1
X1-Xo
fo=1 X 1-tanf,
X1-Xo

1=1-%; L=(6)

Once d = Il t1 Il is known, the robot is in the
same situation as the initialisation phase of the
going toward behaviour. The continuation is
identical, but with a supplementary criterion in
the algorithm that will stop the robot. The
criterion uses odometry to decrement the
computed distance to the landmark till d<d,.

Supposing the landmark is visible (the stimulus
is active), the going to algorithm looks like:

© Align robot on landmark;
® Rotate 0;
® Move forward 1 (parallax movement);
® Compute d;
® Align robot on landmark.
® Loop while d>do .
® Loop while X is inside Z-margins
and d>do.
® Move forward;
@ Get robot position and update d;
(the robot moves in the landmark direction).
@ Align robot on landmark;

4. Vision system
Camera correction

The model usually used to describe the
geometry of a camera is the pinhole model
[11[3]. Unfortunately, this model does not take
into account the lens distortion. The latter can
be very significant, especially in the case of
small f-number lenses [2].

We use here a fisheye lens in order to have a
wide vision angle and to reduce the sensitivity
to shakes of the robot.

The top of fig.3.3 shows the distorted
calibration grid as it is produced by the fisheye
lens. Camera correction transforms the
observed position ugq into corrected position u,
that best fits the camera pinhole model.
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fig.3.3: correction of a fisheye lens:
distorted (top) and corrected
(bottom) image of a calibration
grid.

The distortion characterization is inspired by
the Brown-lines method [3], which principle is
to use a grid composed of a mixture of straight
lines and to correct the curved lines (issued
from the camera image) in a least-square sense,
so that they fit straight lines again. The grid is
planar and parallel to the image plane.

We have restricted this model from general
lines to horizontal lines (y=cst), so that we can
ecasily establish a correspondence between the
points on the grid lines and the points on the
image (curved) line, within a scale factor.

The relation between a distorted point with




coordinates u4 and the corrected one u, is:

u, =Fuy) +¢ B R = %2
F=F, *F
where F, :asymmetrical correction
F;  :symmetrical correction
£ : random error

The radial distortion-can be represented by an
odd polynomial (Franke [7]):

Ar = m;-13 + myrS + ...

By separating Ar on the u and v axes and
keeping only the terms in O et O%, the
symmetrical correction can be written as:

Fy(ug) = u=gq.u4 + Aug

where Aug = (uq - uo)-(mlr2 + m2r4)
Avg = (vq - v(,)-(m3r2 + m4r4).
g = (qu,qv)! (normalization vector)

The solution for the reduction of the
asymmetrical distortion proposed by Kyle and
Loser [8] handles many errors sources like
anamorphism, Keystone effect, sensor rotation
or magnification:

Auz = c1-u + c2-u2 + c3-ud + cq4uv +
c5-u-vZ + cgv2 + c7-v + cg-u-v

Avy = c9-v + ¢10-v2 + c11-v3 + c12-vZu +
c13-v-u? + c14-u2 + c15-u + c16-v-u

The c¢; coefficients contain the distortion
parameters. The asymmetrical function is then

Fy(w) = A,

The correction functions Fg and F, are then
calibrated by establishing a point to point
correspondence between the distorted
coordinates <uq4,vd> and the reference
coordinates <uy,vy>. For each correction
function we need a minimum of n/2
correspondences to resolve the linear equations
system (where n is the number of coefficients
to calibrate).

Generally the number of correspondences is
greater than the minimum, producing an
overdetermined system. Solution of such a
system can be found in a least square sense by
using the pseudo-inverse matrix method [1].

Image acquisition

The landmarks in the 3D scene are of highly
retro-reflecting material and illuminated by a
fluorescent tube mounted on the camera. This
allows to easily separate the well-contrasted
landmarks from the background by
thresholding the image. This thresholding is
done in an input look-up table in real-time.
Then the image is stored in a frame-buffer that
can be accessed by the host computer.

The available image is describe by a binary
function g(x,y):

ge {0,1};x=1.Nx;y=1.Ny.

where the observed landmarks are bright spots
(g=1) on a dark background (g=0).

Real-time constraint

The acquisition rate for a frame is 25 Hz. The
time left for processing the image is about 1 ms
at 25 Hz, 20 ms at 16 2/3 Hz, 40 ms at 12 1/
Hz, ...

For our purpose we define the real-time
constraint by

texec < 20 ms

where texec is the execution time of the
processing part, which allows an acquisition
rate of 16 2/3 Hz.

acquisition \ processing \ acquisition
b. ). » ...

process start

20 ms process end
AN

SYNC
> .
field (1/2 frame)
+—>
interval between 2 images (1 frame + 20ms)

Fig.4.1: time diagram of image
acquisition.

Finding the landmarks

The first step is to detect the landmarks as
particles in the image, a particle being a
connected group of bright pixels (g=1).

Once the particles are detected and their
position determined, particle-following has to
be performed for each of these [1][4].

Single landmark-following

The mass center of the particle is first issued
from the entire image in a initialisation part.




X = 2 ; X,y) X

NXNy X
Ny
where x =kxn; k =0,1,2,. .
Ny
y=kyn; k= 012,,n

n:q quantization step
X :mass center.
Nx,Ny : image size

The n fixes the quantization step (resolution).
It is dynamically adjusted in function of the
particle size (i.e. the number of bright spots),
so that the latter is smaller than a fixed value:

largest n so that 2 z g(x,y) < g0
Xy

The next step is to define a square search
window, of size Ny, that envelops a
prediction of the particle position in the image
that will be acquired just after the processing
part. The prediction is based on the knowledge
of the previouses particle positions. The mass
center of the particle is then computed only in
this window. This greatly decreases the
computatlon time, since (Nx,Ny) becomes the
size of the window.

This size is a critical parameter: the smaller it is,
faster is the computation of the mass center.
but higher is the risk that the particle "gets out”
of the window (sudden rough movement of the
camera).

Pn-2, :
'?\‘Mn-2 ) Nw R
y n-1 Fri-----"-" !
' n-1
Pro—y™, n! iy
e p ¥ [
x [pixels] P-3 | IA_,’”I' e
|
|
I

Fig.4.2: trajectory prediction in
function of the previous positions.
The search window is defined
around the predicted position. ¢ is
the distance (error) between the
estimated and the effective position

Approximation of the particle trajectory

The method is to predict the new location Potl
of the mass center by extrapolating a trajectory

6

estimated from the previous locations of the
mass centers.
The image sequence is supposed to be acquired
with a constant time interval Az. The previous
mass centers P, Pt-1 and Pn-2 are known. We
have

da;l-hl

— 0 for At— 0
n+l. .
where da.X is the difference of the

acceleration projection between Py and
Pp+1.

The principle of the method is to consider

da;l+1= 0 with At = const.

so that an approximation of P+l can be
computed. This leads us to

S R
)A: - i-xn-Z-x“ +§-x“2
YA B s n n-14Lyn-2

ZY™2y gy

A
Thus the predicted position Pn+! is simply a
weighted sum of the 3 previous particle
positions.

The error propagation of the fluctuation on the

Pr-i (i=0,1,2), due to the resolution, leads us
to:

!A)A(mll =5.
|A§n+1] =5.

DB s

Landmark-following algorithm

Supposing the particle is present, the algorithm
looks like:

© Compute the mass center on the entire
image;
® Loop.
@ Estimate the location of the search
window;
® Acquire the image;
® If the particle no more exists then
got0 ©
@® Measure the effective mass center on
the window.
® Update the last 3 mass centers
® Adapt the resolution n to the particle
size within fixed limits.



©goto O

The method is fine for a sufficiently smooth
trajectory (relative 3D landmark trajectory in
comparison with the robot can be much more
perturbated). The limit is fixed by the maximal

difference of the acceleration between Pn+1 and
pn+1.

5-n ixels
Aan+1 —dt2 [P_S.E__]

Tests show that this limit is overrunned in
cases like when the robot suddenly quakes due
to an undetected obstacle.The search window
then no more contains the effective particle.

5. Current implementation.

The algorithms presented here for the go
toward and go to behaviours are designed for
an implementation on a multiprocess system,
since for each behaviour two processes must
run simultaneously.

Our current implementation uses a single
process system. A solution for the
implementation of the parallel processes is to
merge them into a single, sequential program.
For this purpose, the loop forming the slowest
process is opened and pasted into the one
forming the fastest process.

Our implementation is running on a Macintosh
IT and allows a real-time execution of the
behaviours. Tests with a multi-landmark
following algorithm show that the real-time
constraint is also satisfied for up to 3
landmarks in the scene.

6. Conclusion

This paper presented the two vision-based
behaviours named going toward and going to
in the frame of the behavioural approach to
robot navigation. Going toward moves the
robot toward a landmark with visual feedback.
Going to moves the robot up to a fixed
distance to the landmark; to do so, it begins by
a parallaxial movement with respect to the
landmark in order to estimate its distance to it.

We showed that both these behaviours make
use of a module named landmark-following.
This one finds and tracks landmarks in the
image sequence. It applies to either a simple or
multiple landmarks. In the described
implementation, landmark-following is
performed in its single-landmark form by a
simple (the landmark is treated as a point) and

7
robust algorithm which has the advantage to be
fast; it satisfies the real-time constraint.

The vision system considered uses retro-
reflecting landmarks and a light source
mounted on top of the robot, together with a
fixed video camera. The intrinsic parameters of
the camera are not used and thus no camera
calibration is needed. However, in the case of a
fisheye lens which is ours, lens distortion is
very important and its correction is required.
The described behaviours have been
implemented and tested successful on the
robot. They represent example behaviours as
well as building blocks for the more elaborate
behavioural system under construction.
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