Planning the Motions of a Mobile Robot

in a Sensory Uncertainty Field

Haruo Takeda
Claudio Facchinetti
Jean-Claude Latombe

Reprinted from
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
Vol. 16, No. 10, October 1994

T-PAM/16/10//05252

1002

[EEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 16, NO. 10, OCTOBER 1994

Planning the Motions of a Mobile Robot
in a Sensory Uncertainty Field

Haruo Takeda, Member, IEEE, Claudio Facchinetti, and Jean-Claude Latombe

Abstract—TFailures in mobile robot navigation are often caused
by errors in localizing the robot relative to its environment. This
paper explores the idea that these errors can be considerably
reduced by planning paths taking the robot through positions
where pertinent features of the environment can be sensed. It
introduces the notion of a “Sensory Uncertainty Field” (SUF).
For every possible robot configuration ¢, this field estimates the
distribution of possible errors in the robot configuration that
would be computed by a localization function matching the data
given by the sensors against an environment model, if the robot
was at g. A planner is proposed which uses a precomputed SUF
to generate paths that minimize expected errors or any other
criterion combining, say, path length and errors. This paper
describes in detail the computation of a specific SUF for a mobile
robot equipped with a classical line-striping camera/laser range
sensor. It presents an implemented SUF-based motion planner for
this robot and shows paths generated by this planner. Navigation
experiments were conducted with mobile robots using paths
generated by the SUF-based planner and other paths. The former
paths were tracked with greater precision than the others. The
final section of the paper discusses additional research issues
related to SUF-based planning.

I. INTRODUCTION

HE inner, fast-rate control loops of a mobile robot make

use of dead-reckoning techniques to estimate the current
robot configuration. As these techniques ultimately yield large
cumulative uncertainty, environment sensors (e.g., vision) are
often used by higher-level, siower-rate control loops to reduce
uncertainty. Then a separate estimate of the current robot’s
configuration is computed by matching the incoming sensory
data against a prior model of the environment. We call this
second estimate the sensed configuration.

As environment sensing is not perfect, the sensed config-
uration is not error-free either. However, unlike the dead-
reckoning estimate, the error in the sensed configuration
does not depend on past history, nor it results in cumula-
tive uncertainty. It mainly depends on the portion of the
environment that is currently perceptible by the sensors (in

Manuscript received April 24, 1992; revised March 17, 1994. The work
reported in this paper was conducted in the Robotics Laboratory, Department
of Computer Science, Stanford University, under a grant by Hitachi, Ltd. C.
Facchinetti was supported by a grant from the FNSRS (Fonds National Suisse
de la Recherche Scientifique). Recommended for acceptance by Associate
Editor T. Dean.

H. Takeda is with the Systems Development Laboratory, Hitachi, Ltd., 1099
Ohzenji, Asao-ku, Kawasaki 215, Japan; e-mail: takeda@sdl.hitachi.co.jp.

C. Facchinetti is with the Institute for Microtechnology, Neuchétel, Switzer-
land.

J.-C. Latombe is with the Robotics Laboratory, Department of Computer
Science, Stanford University, Stanford, CA 94305 USA.

IEEE, Log Number 9405252.

addition to being a function of the intrinsic quality of the
sensors). If appropriate environment features can be identified
and localized by the sensors from the current actual robot
configuration, a sensed configuration with relatively small
uncertainty can be computed.

The navigation system of a mobile robot should strive to
compute an optimized estimate of the current configuration
at every instant. To that purpose, various techniques (e.g.,
Kalman filtering) have been proposed to combine over time
the estimates provided by both dead-reckoning and sensory
matching techniques. However, the precision of these local-
ization techniques depends critically on the path followed by
the robot. While many collision-free paths may connect the
initial and goal configurations of the robot, some may allow the
sensors to perceive more environment features, hence resulting
in significantly reduced uncertainty at navigation time. The
robot’s navigation system should therefore include a planner
that generates such paths.

In this paper, we introduce a new approach to motion
planning with uncertainty for mobile robots. Given a model of
the robot’s environment, a Sensory Uncertainty Field (SUF)
is precomputed over the collision-free subset of the robot’s
configuration space. For every configuration ¢ in this subset,
the SUF estimates the distribution of possible errors in the
robot configuration that would be computed by a localization
function matching the data given by the sensors against the
environment model, if the robot was at q. The planner uses
the SUF to generate paths that minimize expected errors, by
traversing areas of the workspace where environment features
are visible. Other criteria, for example, combining path length
and expected errors can be specified to the planner.

In Section II, we relate our work to previous research.
In Section III, we give a general presentation of the notion
of a SUF. In Section IV, we describe the construction of a
particular SUF, for a robot equipped with a horizontal line-
striping camera/laser range sensor. The same construction, or
a similar one, would also apply to other range sensors, for
example, a ring of infra-red range sensors. In Section V, we
describe an implemented SUF-based motion planner and we
show paths generated by this planner. In Section V1, we report
on navigation experiments done to measure how well a robot
equipped with a rather generic localization function track paths
generated by our planner, relative to other paths. In Section
VII, we briefly discuss additional research issues related to our
SUF-based planning approach.

This paper includes and extends results previously presented
in [49], [50].

0162-8828/94$04.00 © 1994 IEEE

TAKEDA et al.: PLANNING THE MOTIONS OF A MOBILE ROBOT IN A SENSORY UNCERTAINTY FIELD

II. RELATED WORK

Uncertainty in robot localization is a critical issue in mobile
robot navigation. It has been the topic of a considerable amount
of research.

First, there has been substantial work aimed at developing
techniques to compute the position (or configuration) of a
robot by matching data acquired by one or several sensors
against a prior model of the environment (static localization).
Some of these techniques have been adapted and integrated
with dead-reckoning techniques, e.g., odometry, to periodically
update and optimize an estimate of the robot’s position while it
is moving (dyramic localization). Static localization involves
complex combinatorial matching and is prone to matching
errors due to imperfect sensory data. In contrast, dynamic
localization, which often uses some sort of Kalman filtering,
mainly consists of correcting sensory expectations based on a
fast, initial estimate of the current robot’s position obtained
by dead-reckoning techniques only. Such expectations reduce
combinatorial matching to a verification operation that not
only requires less computation, but is also less sensitive to
imperfection in sensory data. They may further be used to
control the perceptual activities of the robot, e.g., by focusing
a camera toward a pertinent feature of the environment, hence
reducing computation even more. Techniques for static and
dynamic localization are described in many papers, including
[2], [3], [7], [10], [15], [19], [26], [27], [29], [35], [36],
[44], [47], [48], [54]1. However, while these techniques are
essential to make a robot track given motion paths as precisely
as possible, they do not address the problem of generating
these paths. If a path is selected that does not allow the
robot to sense enough pertinent environment features along
its way, these techniques will be powerless. Our research
addresses that issue and focuses on planning motion paths
allowing dynamic localization techniques to apply as well as
possible. The navigation experiments reported in Section VI
were conducted with robots running a dynamic localization
function embedding results described in the papers cited above.

Another line of research, which is closer to our work, has
developed techniques for motion planning in the presence of
uncertainty [30]. Significant results have been reported along
this line, especially for generating fine part-mating motions
in the mechanical assembly context. Several approaches have
been proposed: skeleton refining [25], [38], [46], [52]), induc-
tive learning [17], iterative removal of contacts [11,32], and
preimage backchaining [6], [12], [20], [21], [22], [31], [39).
The first three approaches operate according to two phases:
a motion plan is first generated assuming null uncertainty
and then transformed to deal with uncertainty. This approach
may suit mechanical assembly rather well because many
assembly operations are so constrained by the geometry of
the parts that there does not exist a wide variety of paths
to mate them. However, for mobile robots, uncertainty often
affects the structure of a plan to the extent that it cannot be
generated by transforming an initial one generated under the
null-uncertainty assumption. The fourth approach, preimage
backchaining, takes uncertainty into account throughout plan-
ning. However, it raises difficult computational issues that

1003

have led to using very simple sensor models (for example, lo-
calization errors are often assumed to be uniformly distributed
in a disc of constant radius) and/or restricting its application
to the planning of short sequences of motions. However,
recent work on this approach has made it more attractive for
mobile robot navigation. In particular, preimage backchaining
has been extended to using vision sensors, allowing “visually
compliant” motions to be included in a motion plan [24], [28].
Progress on the computational front has also been made by
incorporating the notion of landmarks in the uncertainty model,
thus reducing planning to selecting motion commands for
going from landmarks to landmarks until the goal is attained
[33], [34]. SUF-based planning also takes sensory uncertainty
into account throughout planning, but it makes it possible to
use more sophisticated models of sensing uncertainty than
preimage backchaining. On the other hand, as we will discuss
in Section VII, there are other issues (e.g., dealing with
uncertainty in motion control) that preimage backchaining
seems to address more directly.

The notion of a SUF is closely related to that of a land-
mark as explored in several papers (e.g., [34], [37], [55]).
A landmark is a characteristic physical feature of the en-
vironment which the robot can sense and use to localize
itself. While in most previous work, landmarks tend to be
binary (either they are visible, or they aren’t), our SUF
has a more continuous flavor expressing the fact that the
precision of robot localization using a landmark depends on the
relative position of the robot and the landmark. Variants of the
landmark concept have been proposed with different names,
e.g. “atomic region” [4], “perceptual alias” [18], “signature
neighborhood” [41], and “perceptual equivalent class” [13],
[14]. Using a similar concept, a planning method which makes
use of a map consisting of four types of equivalent regions is
described in {42]; in each region the robot can sense either no
environmental edge, or a single edge, or two parallel edges, or
two nonparallel edges. However, the variation of uncertainty
within each region is not considered. The computation of the
best viewpoint in terms of visibility of landmarks is studied in
[53]. Techniques to determine the best sensor configuration to
look at a given object are developed in [9], [51].

Many approaches to planning with uncertainty, including
ours, assume that a complete prior model of the environment
is available. Several planning approaches have been proposed
when knowledge is incomplete (e.g., [8], [40]), but these
approaches usually do not explicitly deal with uncertainty in
sensing. However, see [12] for an extension of the preimage
backchaining approach that combines uncertainty in control
and sensing with uncertainty in the environment model. In
Section VII, we will briefly discuss the issue of model incom-
pleteness in SUF-based motion planning.

IIIl. NOTION OF A SENSORY UNCERTAINTY FIELD (SUF)

In this section, we give a general presentation of the notion
of a sensory uncertainty field and how it can be used in motion
planning. This presentation, which is independent of the robot
and its sensors, is intended to serve as a guideline for the more
technical following section, which instantiates the SUF notion
for a mobile robot equipped with a line-striping range sensor.

1004

Consider a robot moving in some environment represented
by a model M. The robot is subject to cumulative dead-
reckoning errors. Therefore, even if it accurately knew its
configuration at time zero, after a sufficiently long motion,
the robot would no longer know its current configuration with
enough precision to guarantee safe navigation. However, if it
is equipped with environmental sensors, it can use them as
an additional source of information to localize itself. Indeed,
let the robot be at configuration ¢ at time ¢. Let S denote
the set of sensory data at this instant. By transforming S into
a perceived partial geometric model of the environment and
matching this partial model against the given model M, a
localization function can compute a best estimate, ¢, of the
current configuration g.

The difference 6¢ = q — q is the localization error. The
magnitude of this error depends on the type and quality of the
robot’s sensors and on the subset of the environment that is
visible by them. For example, a mobile robot equipped with a
range sensor would have no way to localize itself (other than
by pure dead-reckoning) if it lies on an infinite empty planar
surface. Instead, if various objects are distributed over the
surface and if the range sensor can perceive some of them, such
as the comer made by two walls, it can use this information
to recover its position. However, the value of 6¢ will depend
on the position of the robot relative to the sensed objects.
For instance, if both sides of a corner are largely visible,
the error will be smaller than if one side is almost parallel
to the sensor’s line of view. Furthermore, sensory data are
not fully deterministic. Two sets of sensory data, D; and D,
obtained at two different times from exactly the same robot’s
configuration will not be identical. This leads us to consider dq
as the value of a random variable Aq. The distribution U(q)
of this random variable at every collision-free configuration
g characterizes the accuracy to which the robot can localize
itself using its environment sensors. We call the function U
the sensory uncertainty field.

If a probabilistic model of the robot’s sensors is available,
we can simulate this sensor assuming that the robot is at q, use
the model M to generate a set S of simulated sensory data,
and run the matching algorithm on them. We could repeat
this process as many times is necessary to get a reasonable
model of the probabilistic distribution U at g. By performing
this same computation at all the collision-free nodes of a
regular grid placed across configuration space, we would get
a discrete approximation of U over the free space. This is
essentially the idea developed in the next section for a mobile
robot equipped with a horizontal line-striping range sensor.
However, for this particular case, rather than performing many
sensor simulations at every configuration g, which could be
very time consuming, we will propose a more direct way to
compute U. ’

Once the SUF has been computed it is used by a planner
applying a dynamic programming technique to search the
collision-free subset of the robot’s configuration space for
a path optimizing a given cost function. This function can
be chosen as simple as a norm of U, hence seeking for
highly reliable paths. But this choice may yield too long paths.
Other cost functions, combining path length with magnitude

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 16, NO. 10, OCTOBER 1994

of expected errors, result in paths whose reliability and length
are both reasonable.

A SUF can be used for other purposes than planning.
For example, it may be used to assess a new navigation
environment (e.g., by determining if it contains large areas
leading high localization errors) and decide whether it is
worth engineering new landmarks. It can also be used in
a reactive way during navigation. For example, if the robot
considers that it does not know its current configuration with
sufficient accuracy to accomplish a delicate operation (e.g.,
docking against an object), it may perform a short motion
along the negated gradient of the SUF. A similar idea, called
“recognizability gradient,” is proposed in [14].

IV. COMPUTATION OF A SUF

We now consider a mobile robot rolling on a flat terrain.
The robot can translate in any direction.! It is equipped with
a line striping camera/laser range sensor. The laser projects a
horizontal plane of light (actually, a cone). The camera senses
points along the line where this plane intersects objects in
the robot’s environment. A simple tranformation computes the
coordinates of these points in the horizontal plane from the
coordinates of the corresponding pixels in the digitized image
obtained from the camera [5]. The angular scope of vision
of the sensor is limited. However, the sensor is mounted on
a turret allowing the sensor to point in any direction. The
rotation of the turret is independent of the rest of the robot.
The retina of the camera is located at the center of the robot,
which is also the center of rotation of the turret.

The configuration of the robot is defined by three param-
eters: the two coordinates of the center of the robot in the
plane (the position of the robot) and an angle measuring the
orientation of the sensor. The sensor is geometrically contained
in the cylindrical body of the robot. Hence, the objects in the
environment (obstacles) map into the robot configuration space
as cylinders whose cross-section is independent of the sensor
orientation. The projection of these cylinders into the position
subspace (horizontal plane) is obtained by growing the objects
in the environment, isotropically, by the robot’s radius.

We first present the uncertainty model of the range sensor.
Next, we compute the SUF corresponding to this model. Our
sensor model is more realistic than most models used by other
motion planners. However, it is still simpler than some models
used by interpretation routines at execution time (e.g., see [15],
[19], [43]). In fact, while a planner must anticipate all possible
sensory data, a run-time navigation system only deals with the
specific data returned by the sensors, which makes it easier
to use sophisticated sensor models. The computation of the
SUF is thus based on some simplifying assumptions. However,
as far as planning is concerned, it is only important that the
SUF captures the main effects of the environment features on
localization uncertainty. Moreover, the fact that the planner
uses one model does not prevent the run-time interpretation
routine from using a more sophisticated one.

'One robot used in our experiments is a NOMAD 200 of Nomadic
Technologies.

TAKEDA et al.: PLANNING THE MOTIONS OF A MOBILE ROBOT IN A $ENSORY UNCERTAINTY FIELD

Sensor model.

Fig. 1.

A. Uncertainty Model: The One-Line Case

We assume that all objects in the environment have polyg-
onal cross-sections. Hence, the range sensor sees polygonal
lines. Consider the case where a single infinite environment
line is visible. Sensing this line allows the robot to estimate
its distance to the line and its orientation relative to it. We
compute the uncertainty of this estimate for a model of the
sensor presented below.

Sensor Model: Let ¢ denote the environment line that is
visible by the sensor. The sensor measures distances between
the center point O of the robot and ¢, along 2n -+ 1 horizontal
rays $_p, -, 8o, -+, 8, cast from O (Fig. 1). Let ¢; denote
the angle between the direction pointing from O perpendicu-
larly to £ and the ray s;, i = ~n,---,n. We assume that the
sensing rays are uniformly distributed so that:

bi = ¢o + i,

The rays s; are called the sensing rays of the sensor. The ray
8o is called the axis of the sensor. The angle 2n7 is the scope
of vision of the sensor.

Let Oxy be an orthogonal coordinate system with its z-axis
perpendicular to £. Let d be the actual distance between O
and £, and ¢ be the angle between the z-axis and the actual
axis of the sensor (hence, ¢ = ¢). Neither ¢, nor d, is known
by the robot.

Let d; be the sensed distance between O and ¢ along the
ray s;, P; be the point at distance d; of O along this ray, and
(z:,1:) be the coordinates of P; in the Ozy system. Because
of sensing errors, the points P; are usually not located in £.
Fitting a line through them and assuming that this line is £
allow the robot to estimate ¢ and d with some error.

To establish the distribution of possible errors in the esti-
mates of ¢ and d, we assume that the sensing error in the
range data along any ray s; is bounded by R and lies in an
interval centered at the intersection of this ray and ¢, with the
length of this interval proportional to this distance. We also
assume that the angle 7 between two successive sensing rays
is known exactly.? More formally, we regard «; and y; as the

i=-n,,~1,0,1,---,n.

2We will see that these simplifying assumptions do not have significant
impact on the computed SUF.

1005

values of two random variables X; and); defined as follows:

X, = d(l + Ri), (1)
Vi = Aitand;,
where R_n,:-+,Ro, -+, R, are independent random vari-

ables with the same probability distribution in the interval
[~ R, +R]. The specific distribution of these variables, which
does not have to be uniform, is not important here.

In the above model, sensing uncertainty increases with
distance to sensor. We can furthermore limit the range of
the sensor to some predefined value (4, by considering that
every ray s; such that d/cos¢; > (nar Senses nothing.

Uncertainty in ¢ and d: If the range sensor was actually
located at distance d from the environment line £, with its axis
pointing along the direction ¢ (as shown in Fig. 1), sensing
the positions of the points P; would correspond to generating
values of the random variables R;, hence values z; and y; of
A; and ;. Using these coordinates, the equation of a line £/
would be established by running a line-fitting algorithm. By
matching ¢’ to £, the parameters ¢ and d would be estimated

as ¢* and d*.
The errors in these estimates are:
b = ¢—o*,
6d = d-d*.

The error in d* corresponds to considering that the location
of the robot’s reference point O is in a line L parallel to £ at
abscissa 0d. No estimate of the ordinate of this location can
be inferred by matching ¢ to £ .

We regard §¢ and 6d as the values of two random vari-
ables A¢ and Ad. Every sensing of the environment line
£ corresponds to generating a pair of values for these two
variables. We define uy 4,,(0¢,6d) as the joint probability
density function of A¢ and Ad.

Let r = (r_n,---,70,+,7,) be a list of values for the
random variables R_,,---,Rg, -+, R,. The domain of r is
the hypercube A C R?"*+! centered at the origin and defined
by [|I7]lec < R, where ||r||o is the sup norm of 7. Let f4 4, (7)
denote the function that maps any point r € A to the error pair
(6¢,6d). This function is completely defined by the above
expressions and the line-fitting algorithm.

In the following we assume a classical eigenvector line-
fitting algorithm [16]. This algorithm is described in Appendix
A for completeness, along with the corresponding expressions
of ¢*, d*, 6¢, and &d. The curves shown below have been
computed using these expressions.

The image of A by f4 4. is a region B C R2. It represents
the locus of all possible error pairs (§¢,6d) for our sensor
model, i.e., the domain outside which w4 4, is identically
null. The image of every edge of A is a curve segment. By
computing the image of many points randomly selected in A,
we have verified experimentally (but not proven analytically)
that the boundary 0B of B is a subset of these curve segments.

To illustrate, consider Fig. 2. It shows the computed bound-
ary of the region fy1,2(A4) with 7 = 5° and R = 0.1, This
boundary consists of 10 segments, each one corresponding to
an edge of the hypercube A. For example, the curve segment
marked [+, +, +,7, —|*" is the portion of OB that corresponds

1006

tr
573 Tarr s

ir
[t x—-]

tr
~r~=rEyt]

Ir=

tr
[x,==—=-]

tr
== Ty H] S

0.1

[:c,+,+,+,+)‘_01 %"

ir
PR Bt s

30
0.5

Fig. 2. Boundary of the region fo.1.2(4).

1)

Fig. 3. Sample errors with a uniform distribution of the r,’s.

to the edge {[0.1,0.1,0.1,7,—0.1] | r € [-0.1,+0.1]}.
Fig. 3 shows the same curve along with 2000 points represent-
ing error pairs (6¢, 6d) computed for random values of the r;’s
uniformly distributed in [—0.1,40.1], with the parameters 7,
¢, and d set as above.

Comment: The conspicuous shapes of the segments

[+,+,r,—, =]"" and [—,—,7,+,+]'" can be explained as
follows. Consider, for example, [+,+,7,—,~]". When
r = —0.1, the point P, is as shown in Fig. 4(a) and the

mean point G of the P;’s is on the left of the line £, slightly
under the horizontal z-axis as s_; and s_p are located further
away from this axis than s; and sq, respectively. When r
increases toward 0 and beyond, Py moves toward the right.
G also moves toward the right, but by a very small amount
compared to Fy. In fact, for the purpose of this discussion,
we can consider that G is fixed. When Py gets closer to £
(on the left side), £’ becomes more vertical and 8¢ decreases
(however, the variation is small and barely visible in Fig. 4).
For some value of r close to 0 (actually computed as 0.0187,
which corresponds to the situation when PG is perpendicular
to £), ¢ is minimal (Fig. 4(b)). When r increases further
toward 0.1, #' tilts again and ¢ increases (Fig. 4(c)).

Other Examples: Fig. 5 shows the boundary of fy 1 ,(A4),
when 7 = 5° and R = 0.1, computed for ¢ = 0°, 20°, 40°, 60°
and n = 2,4,6. (Whenn = 6 and ¢ = 60° the ray of direction
¢¢ does not intersect the line £. This is why the boundary
shown in Fig. 5(1) is computed for ¢ = 50°.) The length of the
projection of a boundary on the §d-axis is the range of possible
errors in the estimate of d. One can see that, for a fixed value
of n, it first increases as ¢ increases from 0, and later decreases
after it reached a maximum. This nonmonotonic variation is

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 16, NO. 10, OCTOBER 1994

x=d
5¢=0.651
L)

p)

!

(b) r=0.0187

(c) r=0.1

Fig. 4. Displacement of the best-fit line.

the result of two more basic variations with opposite effects.
When ¢ augments, both the length of the portion of the line £
that is visible by the sensor and the average length of the rays
increase. While the increase in the length of the visible portion
of £ tends to reduce uncertainty, the increase in the average
length of the rays tends to augment uncertainty. For a fixed
value of the sensing direction ¢, uncertainty monotonically
decreases as n (i.e., the scope of vision) increases.

Discussion: The above results hold for any bounded dis-
tribution of the r;’s. Moreover, the curve 9B constructed as
above still gives a good approximation of a domain outside
which the density function wug 4n(6¢,8d) takes very small
values when the r;’s have a nonbounded normal distribution.
For instance, Fig. 6 shows error pairs (6¢, 6d) computed for
2000 random values of r with the parameters 7, ¢, and d
set as in Fig. 2 and a normal distribution of the r;’s of
variance 0.0333 (the variance of a uniform distribution over
[-0.1,+0.1]).

The above results remain satisfactory even if we allow some
errors in the ray directions. Fig. 7 shows error pairs (8¢, 6d)
under the same conditions as above, except that, to compute
the 2000 error pairs, we let each angle ¢; take normally
distributed random values with standard deviation 1°.

B. SUF Computation

We now consider the case where the range sensor detects
multiple nonparallel environment edges in a polygonal envi-
ronment. Matching these edges to a prior geometric model M
of the environment allows the robot to estimate its configura-
tion (X,Y, &), where (X,Y) is the position of the center point
O in a coordinate system £2XY attached to the environment
(the horizontal plane) and @ is the angle between the X-axis
of this coordinate system and the axis of the sensor.

Estimation of the robot configuration: Assume that, at
some time ¢ during navigation, the robot’s actual configuration
(unknown by the navigation system) is (X, Y, @). Assume that
m environment edges e; (finite line segments) are visible by
the sensor at this configuration. Let Z; denote the infinite line
supporting e; (2 = 1,.--,m). (If the sensor has limited range
Cmaz>» We only consider the environment edges e;, or the
portions of them, which are contained in the disk of radius
Cmaz centered at g = (X,Y,d).)

Let us assume that the sensor detects all the . edges as
ef, 4 = 1,---,m. This is a realistic assumption for a line-

TAKEDA et al.: PLANNING THE MOTIONS OF A MOBILE ROBOT IN A“$ENSORY UNCERTAINTY FIELD

1007

ad 5d &
N% 0.1 01
L) < P) L€))
05~ -~ 05 05 S~ L 05 05 N~ 05
-0.1 -0.1 -0.1
() n=2, t=0 (b) n=4, t=0° (¢) n=6, t=0°
&d &d &d
0.1 0.1 0.1
S~ V\\ 3 O 8
-0.5 0. -0.5 05 -0.5) o5
h -0.1"> -0.1
(@) n=2, =20 (€) n=4, t=20° (f) n=6, 1=20°
ad 5d &
0.1 0.1 0.1
8 V\ 3 I\ 8
-0.5 0.5 0.5 N\ 05 -0.5 \\5 0.5
-0.1 -0.1 -0.1
(®) n=2, t=40" (h) n=4, t=40° (i) n=6, t=40"
&d &d &d
0.1 0.1 0.1
)) %
05 05 05 05 -05 05
-0.1 -0 -0.1
() n=2, 1=60" (k) n=4, 1=60" (1) n=6, t=50"

Fig. 5. Boundary of f,,(A) for various values of ¢ and n.

, 69

Fig. 6. Sample errors with a normal distribution of the r;’s.

striping sensor, if the edges have sufficient length. Indeed,
during navigation the robot can use an expectation-driven
dynamic localization function, which virtually eliminates all
matching errors for this kind of sensor (see Section VI). Let
4, 1 to m, denote the lines supporting these sensed
edges obtained by the line-fitting algorithm. Matching them
against the N lines in the environment model M gives a map
g i € [l,m] =~ j € [1,N] that associates some line £,
in the model with every sensed line ;. The map g may not
necessarily be a surjection, nor an injection.

Fig. 7. Sample errors with errors in the ray directions.

The map g is then used to compute an estimate (X*, Y*, §*)
of (X,Y,®). From each line pair (£;,£;) such that j = g(3),
one can infer a value of *, as well as a line L;; parallel to
£; containing (X*,Y™*). If there were no errors in sensing, all
the line pairs (£;,£;) would result both in the same value of
9* and in lines L;; intersecting at a single point. The value
of (X*,Y™*) would be the coordinates of this point. Due to
imperfect sensing, the various pairs (£;,¢;) usually result in
slightly different estimates of ¢ and in lines L;; that are not
concurrent. Various techniques (e.g., averaging) can be used
to produce a best estimate (X*,Y™, &*).

1008

Q

Fig. 8. Detection of multiple edges.

Fig. 9. Restriction of the sensor to one edge.

We regard the errors in the computed estimate
b X=X-X"6Y=Y-Y"* 60 =0 —P*,

as the values of three random variables AX, AY, and AJ.

Construction of the SUF: Recall from Section III that com-
puting the SUF at some configuration ¢ consists of “sim-
ulating” the sensor at this configuration and computing the
distribution U(q) of the localization errors. Hence, our goal
is now to characterize the joint probabilistic distribution of
6X, 8Y, and 6 from the. model of the sensor. Rather than
simulating the sensor a large number of times, we propose a
more direct technique presented below.

Consider that the robot is at ¢ = (X,Y,®). A simple
visibility computation using the environment model allows
us to extract the environment edges that are visible from gq.
Let us denote these edges by e, k = 1,---,p. Notice that
an environment edge e; (j € [1, N]) may not be completely
visible. Hence, each e, may only be one portion of some e i
and several e,’s may be disconnected portions of the same
environment edge e;. Let £, be the supporting line of ey, d
the perpendicular distance from O to #; and «;, the direction
of the inward normal to ¢.

Fig. 8 illustrates these notations. The scope of vision of
the simulated sensor contains two (partial) edges e; and ey

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 16, NO. 10, OCTOBER 1994

Fig. 10. Construction of the region where [{x y.¢(6X. 61, 66) # 0.

supported by two perpendicular lines /; and /5. We have
] = 0° and Qg = 90°.

Let r and 7}, be the two rays drawn from the center
point O and passing through the endpoints of ey, (see Fig. 9).
Let ¢y denote the angle between the line of direction
(perpendicular to £;) and the sensing ray s; (¢ € [—n, +n]) that
is the closest to the bisector of the two rays rj and r}. Let ny
be the largest integer such that all the rays s;_n,,- o) Sitng
lie between 71, and 7. Below we consider only those edges
ey for which n; > 1. This corresponds to setting a threshold
on the acceptable length of an edge portion; if an edge portion
is shorter than this threshold, it is not considered to be visible
by the sensor with sufficient reliability.

We define:
k=p
Uxy,s(6X,8Y,60)= H Ugpyoydic i, (05 | €OS g +y sin g]).
k=1

The function Uy y,¢(6X, 6Y, 69) can be interpreted as an ap-
proximation of the joint probabilistic density of AX, AY, and
A®, when the sensor’s configuration is (X, Y, $). We compute
the sensory uncertainty field as the functional U(X,Y,®) =
Uxya(-y)

The region of &3 where Ux v, is nonzero approximates the
range of possible localization errors at run-time. Fig. 10 illus-
trates the construction of this region for the example shown
in Fig. 8. It is obtained by intersecting two volumes, V; and
V2, corresponding to two visible edges e; and ez, respectively.
The cross-section of the volume V; (corresponding to e;) at
any constant Y is the region shown in Fig. 5(d) with a scaling
factor d.* The cross-section of the volume V, (corresponding
to e3) at any constant X is the region shown in Fig. 5(h) with
a scaling factor dp. We compute a discretized approximation
of the intersection of V; and V3 by discretizing the parameter

*We show in Appendix B that u,, 4, (60.6d) = u,), (6d.(6d)/d).

TAKEDA er al.: PLANNING THE MOTIONS OF A MOBILE ROBOT IN A SﬁNSORY UNCERTAINTY FIELD

1009

Fig. 11. Minimum SUF values in a simple environment.
space and determining which errors fall in the intersection of
V1 and Vé

Discussion: 1If no two nonparallel edges are visible by
the sensor at some configuration (X,Y,®), then the region
where the function Uy y g is nonzero extends to infinity
in some direction. In our implementation, we arbitrarily
set Uy ye to a uniform distribution over a large error
domain, along this direction.

Our computation of Ux y-g does not account for the fact that
environment edges are line segments of finite lengths. Doing
so would be meaningful only if the edge endpoints could be
sensed precisely, which the range sensor described here is not
very good at. On the other hand, whenever the two edges
abutting a corner are visible, the location of the corner does not
provide any additional information, since it is implicitly taken
into account by fusing the information given by the two edges.

Our computation of Uy y,¢ does not take into account the
specific technique used by the localization function to infer
the best estimate (X*,Y™* &*) from the various pairs (£, ¢;)
provided by the matching map g. However, the effect of such a
technique on the localization error tends to be small compared
to the impact of the arrangement of edges that are visible by the
sensor. More generally, the constructed SUF seems to be only
marginally dependent on the particular localization function
that is used (including the line-fitting algorithm), provided that
this function is a reasonably good one.

V. SUF-BASED MOTION PLANNING

A. Planning Method

We now describe a simple form of motion planning using the
sensory uncertainty field computed as in the previous section.
Our planner performs a simple dynamic search in a regular
grid (the grid over which the SUF was computed) in order to
find a path that optimizes some given criterion.

Ne N
Ye 3¢ of
¥ owx
ow A
Y3 ot 2k W e v o
Yo 3o 5 e e 3 ok ue 3¢ £
P e L T a4

Fig. 12. SUF values for several sensor orientations.

A planning problem consists of generating a collision-free
path » between two given configurations g;,;, and g,,,, that
minimizes the functional:

T(v) = / [F(X,Y,)] dv,

where ¥ is a function measuring the “magnitude” of the SUF.
In our planner, we use ¥ defined by:

F(X,Y,8) = / / /u L d6X) A d0)

It measures the volume of the region where U/x y,¢ is nonzero,
hence the volume of the error domain. It is computed by
placing a grid in the error space and countirig the number
of points of this grid where I/ # 0. To construct the grid
we select the metric along the §@-axis, on the one hand, and
the metric along the 6X and §Y -axis, on the other hand, so
that the maximal errors in all directions defined as above have
roughly the same order of magnitude.

1010

Qgoal

Qinit Ginit

IEEE TRANSACTIONS ON-PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 16, NO. 10, OCTOBER 1994

Qgoal

Qgoal

(a)

©)

Qgoal

Qgoal Qgoal

(@

Fig. 13.

€ v =10, ¢ = 01. (h v = 1.0, p = 0.001.

Figs. 11 and 12 display maps showing the values of
F(X,Y,®) over a simple T-shaped environment. In this
example, as in the following ones, we assume for simplicity,
but without loss of generality,* that the robot is a point.
Fig. 11 shows the minimal value of F(X,Y, &) for all possible
orientations @ of the sensor, at every position (X,Y) in a grid
placed over the environment. The grey intensity represents
this value; the darker the pixel, the higher the uncertainty. At
every position, the small arrow shows the orientation of the
sensor that gives the minimum uncertainty at this position.

. Observe that the map is not continuous, for instance around the
two concave corners, because of changes in the visible edges.
Fig. 12 displays a map of the SUF values at sampled positions
in the grid for a discretized set of sensor orientations. The
length of each small ray is proportional to the inverse value of
the SUF; hence, the longer the ray, the lower the uncertainty.

The set of collision-free positions is discretized into a
regular grid. A path v is described as sequence {g;}i=0,... s
of adjacent configurations in this grid. The functional J is
computed as the discrete sum:

s—1

‘7(’/):2

i=]

(F(g,)" + F(qi+l)’y)D(qiaqi+1)av

[N

whereD(g;, q;) is the distance between the two configurations
g; and g;. J(v) depends on both the length of the path v and
the sensing uncertainty along r. The exponent ~y allows us
to weigh path reliability versus path length. The larger -y, the
more important path reliability in J. Hence, if we increase the
value of v we will typically get more reliable, but longer paths.

A path minimizing J is constructed by searching the
configuration space grid starting at the initial configuration,
using the Dijkstra algorithm, i.e., the A* algorithm with
the trivially admissible null heuristic function [1], [45]. This
algorithm is guaranteed to return the optimal path. If the goal
orientation is unspecified, the search is conducted with a goal
set of configurations.

“4Recall from the beginning of Section IV that configuration space obstacles
are cylinders.

Paths generated by the SUF-based planner.(a) v = 3.0, ¢ = 7. (b) ¥ = 1.0, p = 7. (¢) 7 = 0.5, p =

)
m.(d) 7 = 1.0, p.= 04

&.2.2.8.2

¢

@

Fig. 14. Influence of the rotation cost.

The successors of a configuration g, = (X, Yi,) gen-
erated at every iteration of the search (i.e., the neighborhood
of g,,) are all the configurations ¢}, = (X},Y},®}) # g, in
the grid such that X; € {Xj — 1, Xk, Xi + 1}, and Y} €
{Yi — 1,Y%, Y, + 1} (we assume that every increment along
all axes of the grid is normalized to 1). This definition allows
the robot to rotate to any desired orientation at every step.
The distance between two configurations q; = (X;,Y:, &;)
and ¢; = (X;,Y;,9;) is computed as:

1
Diging;) = max(y/(X; = X2 + (¥; = Yo, = 16; ~ 6]}

This definition of D corresponds to assuming that rotation has
some cost attached to it. Indeed, large changes in orientation
between two consecutive configurations may require the robot
to slow down its translation. In the above definition, y can
be interpreted as the ratio of the robot’s maximal speeds in
rotation and translation. The larger 4, the faster the rotation.

TAKEDA et al.: PLANNING THE MOTIONS OF A MOBILE ROBOT IN A 8ENSORY UNCERTAINTY FIELD

(a)
Fig. 15. SUF and generated paths in another environment. (a) 7 = 1.0. p=m.03=10. p=01r.(c)7 =30, u ==

B. Examples of Generated Paths

The computation of the SUF and the SUF-based planning
method described in the previous sections have been imple-
mented in a program written in C which runs on a DEC 5000
workstation. In this section we show paths computed by the
planner. The tuning parameters v and 4 allow us to weigh
path reliability versus path length, and to vary the ability of
the sensor to rotate.

Fig. 13 shows six paths constructed by the implemented
planner for different values of v and y in the T-shaped
environment of Fig. 11. The first three paths are generated
with a rather large constant 4 = =. Then the sensor can
rotate to any orientation as the robot translates between two
adjacent positions at maximum speed. Fig. 13(a) is obtained
with v = 3.0. Then path reliability is important, and the
planner generates a long path that follows environment edges
and comes close to comers (remember that in these examples
the robot is a point). Fig. 13(c) is obtained with a small value of
v (v = 0.5), and the length of the path is then more important
than its reliability. (Since the search of a path is restricted
to 8 directions in translation, the planned path is not just
the straight line segment connecting the initial and the goal
positions.) Fig. 13(b) is obtained with an intermediate value
of v (y = 1.0).

The next three paths are generated with a constant v =
1.0. Fig. 13(d) is obtained with x4 = 0.4. Then, while
the robot translates between two adjacent positions at its
maximum speed, the rotation is limited to 0.4rad = 22.9°
for 4-neighboring positions and 0.4v/2rad = 32.4° for di-
agonal neighboring positions. Fig. 14(b)’ and (d)’ shows the
robot (as a small circle) and the sensor scope (as a smalil
cone) along the paths of Fig. 13(b) and (d), respectively.
In Fig. 14(b), the sensor rotates by almost 180° twice,
along the portions of the path marked by A and B. In-
stead, in Fig. 14(d)’ only one such rotation occurs (portion
marked by C). With v = 1.0, the cost of the first path is
lower when 1 = m; the cost of the second path is lower
when g = 0.4.

Fig. 13(e) is obtained with an even stronger constraint on
the sensor rotation (; = 0.1). The path has the same length

1011

(©)

as in Fig. 13(d), but it comes closer to the concave corner so
that it can rotate at a more reliable point, at the expense of
passing through less reliable points where it does not have to
rotate. Fig. 13(f) is an extreme case with a strong rotational
constraint.

A more complicated example of SUF-based planning is
shown in Fig. 15. The environment contains multiple barriers
with various directions and lengths. It is contained in a larger
square environment (not shown in the figure) bounded by four
walls aimed at making sure that the SUF has a definite value
at every configuration. Three paths produced by the planner
are shown in the figure. The values of v and y for each path
are given in the figure. The most reliable path is displayed in
Fig. 15(c). But, because it closely follows more environment
features than the other two, it is also much longer. The path
of Fig. 15(a) achieves a compromise between path length and
reliability. The path of Fig. 15(b) it is similar, but the cost
of rotation along this path was set bigger than for the other
two paths.

In the example of Fig. 15, the grid was a 20x20 array and
the orientation was discretized into 24 values. Computing F
took 14.9 minutes for the entire configuration space, hence an
average of 135 milliseconds per configuration. About 95% of
the computation is spent in computing volume intersections
(Fig. 10). Each of the three paths was generated in 20 to 40
seconds.

A simple variant of the planner is obtained by assuming
that the robot can rotate to any orientation while it translates
by one increment in the workspace at maximal translation
speed. Then the search for a path can be conducted in the
two-dimensional grid placed over the workspace (with the 8-
neighborhood) by using the minimal values of F at every
position. We ran this variant with the example of Fig. 15. The
computation time is now of the order of 30 milliseconds. This
reduction derives from the fact that every node (position) in
the new search graph has at most 8 successors, while with
the original method every node (configuration) had up to
215 successors. This result strongly suggests that the range
sensor should be placed on a fast rotating turret whose
orientation can be controlled separately from that of the
robot.

1012
i
4 .
L L &V : waypoint
!
r= [: obstacle
(o’
L _; @ : navigable area
|
r-
d
11
1
yr-+
LA
©00)

X

Fig. 16. Schematic of an experimental setup.

VI. NAVIGATION EXPERIMENTS

We experimented with paths generated by the SUF-based
planner using two mobile robots equipped with a line-striping
range sensor. The first robot is a prototype robot, called
gofer, described in [5]. The second robot is a nomad 200
robot of Nomadic Technologies. The mobile platforms of
both robots have the same classical three wheel synchronous
drive mechanical system allowing null turning radius, i.e., pure
rotation about the center O. However, unlike nomad 200, gofer
is not equipped with an independent turret to orient the range
sensor. We dealt with this limitation by stopping gofer at every
sensing operation and rotating the robot to point the range
sensor along the direction suggested by the motion path.

We equipped the navigation system of both robots with a
dynamic localization function (see Section II) which we sketch
. below (a more detailed description of this function is given in
[23]). A path is input as a sequence {gg,q;, -} of config-
urations called viapoints, starting at the initial configuration
and ending at the goal one. The robot is placed at the initial
configuration with sufficient precision to apply the dynamic
localization function. (An alternative would be to compute
the initial configuration using a static localization technique.)
When the robot thinks it has reached the ith viapoint g;
(actually, it is not exactly at g;), it acquires the data S;
provided by the range sensor, computes a first estimate qg” of
its current configuration (we will say in one instant how this is
done), and performs a motion servoed through the odometric
sensors (encoders) that is intended to go from ¢}§1) 10 ;-
During the time spent executing this motion, the data S; are
matched against the model M of the environment in order to
generate a second (and better) estimate, qu), of the robot’s
configuration at the th viapoint. When the robot thinks it has
reached the (i + 1)th viapoint, it generates the first estimate
615_131 of its current configuration as:

aGh = + (g - 2
And so on.

Whenever a configuration estimate qgk) (k =1lor2)is
computed, an uncertainty region is associated with it (qgk)
is the center of this region). This region, which is assumed
to contain the actual configuration of the robot at the ith
viapoint, is obtained by intersecting uncertainty regions pre-
viously associated with the data used to compute qgk). In our

[EEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 16, NO. 10, OCTOBER 1994

implementation, the uncertainty region for the robot’s position
is an ellipsoid; the uncertainty region for the orientation is an
interval [23]. When two regions are intersected, the resulting
region is approximated and given the same general geometric
shape. Such data fusion techniques are described in detail in
several papers, including [18], [23], [36], [48], [54].

Once the first estimate qg” of g; and its uncertainty region
have been computed, our localization function computes the
second estimate q§2> in two steps.

1) A few (typically, 4 to 8) configurations evenly dis-

tributed in the uncertainty region of QEI) are considered.
For every such configuration, a visibility analysis is
carried out on the model M assuming that the robot
is exactly at this configuration. For every sensing ray
of the sensor, the distance between the point of M that
should be seen and the actual location of the sensed point
is computed. The sum of these distances for all rays is
used to characterize the quality of the match at each
configuration considered in the uncertainty region of
.351). The best match is defined as the one that munimizes
this sum.

2) A side-effect of the first step is to label every sensed
point along a sensing ray by an edge of M. The labeling
established for the best match is used. The points labeled
by the same edge are grouped together and the line-
fitting algorithm of Appendix A is applied to them.
Comparing the equation of each estimated edge with
the equation of the corresponding model edge yields an
uncertainty region for the robot’s configuration at the
ith viapoint. The regions obtained for all edges and the
uncertainty region of qgl) are intersected together to form
the uncertainty region of qu). The estimate 4“1§2) is the
centerpoint of this region.

Notice that these two steps compute @(2) as a refinement
of (}l(-l), i.e., the uncertainty region of ‘71(2) is fully contained
in the uncertainty region of 6151). In the particular case where
the robot senses no environment edge, the two region are the
same. Moreover, since uncertainty caused by dead-reckoning
cannot grow to infinity along a finite path, uncertainty regions
remain always bounded.

Experiments have shown that this two-step localization is
very robust. The first step eliminates the difficulties usually
encountered in segmenting a sequence of sensed points to
extract line segments. The labeling it creates also avoids most
matching errors. Small errors may subsist close to corners
(e.g., one point on one side of a corner may be assigned to the
other side), but points falling too close to corners can easily
be discarded in the first step.

The navigation systemn and its localization function are
written in C and run on a SUN-3/80 workstation used as the
host computer for the two robots in the experiments reported
here. The average processing time for a localization cycle is
about 1 second. A more recent implementation of this function
on a 63040 processor runs in about 1/10 second.

Fig. 16 represents an environment in which we carried
out experiments. The workspace is a 15 x 10-square-foot
rectangular surface (nomad 200 has a diameter of 21 inches).

TAKEDA et al.: PLANNING THE MOTIONS OF A MOBILE ROBOT IN A SENSORY UNCERTAINTY FIELD

TABLE 1
DRIFT ALONG PATH B USING LOCALIZATION
1{0]4 6 5 5
2142|13|4|5|5(4]|6]5
313|414 |5]4|4]|5
411112344454
521013214 (3|3]4
612(0(3]112]2(33
71101222 (3|5]|4
8111112344 (4]|4
91 2 4 4
TABLE 11
DRIFT ALONG PATH A USING LOCALIZATION
10711 4
2fo{1]2]3[37
310;1]1(23]|6
41111111245
511111344
61112]2(3(3][3
712 3 3

Two polygonal obstacles lie in this workspace. Two other
obstacles (side walls) lie outside the workspace, but can
nevertheless be perceived by the range sensor. The figure
shows two paths, A and B, between an initial configuration
s and a goal configuration g. Both paths are defined as a
sequence of viapoints at approximately the same resolution.
Path B (9 viapoints) was generated using the SUF-based
planner, while path A (7 viapoints) was constructed by hand.

Tables I-1V show experimental data obtained for one set of
experiments using the nomad 200 robot. Similar results were
obtained with gofer.

Table I records the drift in the robot position (magnitude
of the position error, in inches) as it performed four round-
trips along path B. The numbers in the first column denote
the 9 viapoints along path B (the first viapoint being s and
the last one being g). The 2ith columns (i = 1,2, 3, 4) contain
the drift when the robot moves from s to g. The (2i + 1)th
columns (¢ = 1, 2,3, 4) shows the drift when the robot returns
from g to s. Column 2 should be read downward, column
3 upward, column 4 downward, etc. Drifts were measured
by hand. The robot was accurately positioned at the initial
configuration, After some time, the drift stabilized to a few
inches. A detailed interpretation of the drift values is difficult.
Indeed, some localization errors were increased by the fact that
the floor (made of wood) was not really flat, leading the range
sensor to measure distances in a slightly nonhorizontal plane.

Table II records the drift of the robot along path A. The
motion terminated at the end of the third round-trip before
reaching via point 2, when it collided with an obstacle (}).
The table shows that the drift tends to increase monotonically
(actually, some other experiments showed that trend even more

1013

TABLE III
DRIFT ALONG PATH B WITHOUT LOCALIZATION
1015 9 16 20
21014151819 (14]15]17
30(2({4]|7|8]|10]|13 |16
4143|7719 [13]13
51114 (5(6[6}]6 118
61315(5|6[7|6 19 |9
Ti44(5(6|6|7|7 [7 |8
815(4(5|5|8|6 |8 |8
915 4 8 9
TABLE IV
DRIFT ALONG PATH A WITHOUT LOCALIZATION
1f0}]5
215167
3126|618
42578
513|1618(9
614(6(819
76 9

neatly). The reason is that path A never allows the robot to
see two nonparallel edges.

Tables Il and IV record the drift of the robot along paths B
and A, respectively, when the robot relies on dead-reckoning
only. The drift then grows much faster than in Tables I and II.

Remark: Why is the drift in Table II smaller than in
Table IV? One reason is that the visible edge allows the dy-
namic localization function to periodically reduce the position
error along the direction perpendicular to this edge (the y-axis
of the world coordinate system). However, the main reason for
that is elsewhere: The visible edge also allows reducing the
error in the orientation of the robot’s wheels. The kinematics
of nomad makes this error the leading cause of error in the
position estimate computed by dead-reckoning (each motion of
the robot is indeed a translation along the direction pointed by
the wheels). Hence, while reducing the error in the orientation
of the wheels has no direct effect on the second position
estimate (the one computed by the localization function), it
reduces the error in the first position estimate (the computed
by dead-reckoning). If our dynamic localization function did
not reduce wheel orientation errors, the comparison between
Table I and Table IT would be much more favorable to the
path generated by SUF-based planner.

In general our experiments showed that paths generated by
our planner can be tracked with good precision using dynamic
localization, yielding reliable navigation. The tracking preci-
sion for other paths depends of course on the geometry of these
paths relative to the environment. But the SUF-based planner
consistently produces paths of better or similar quality. In
particular, it avoids very poor paths (with respect to sensing),
when other paths are possible.

1014

VII. DISCUSSION

In this section, we briefly discuss further research issues that
have not been addressed above.

Accuracy of Environment Model: We assumed that the in-
put environment model is accurate. In reality, such a model is
at best correct within some tolerance. In the case of our planar
range sensor, one way to deal with errors in the input model
would consist of taking them into account in the probability
distributions of the random variables R; used in (1). But the
R:’s would no longer be independent, subsequently yielding
more complicated computation. Our experience, however, is
that for many environment (especially, indoor environments),
errors in the input model can be neglected. For example, in
our experiments they were less than one inch.

Completeness of Environment Model: We also assumed
that the environment model is complete. In a realistic setting
the robot will encounter unexpected objects at execution time.
For example, in an office environment, such objects are easily
movable objects, e.g., chairs and small tables. These objects
may hide expected environment edges from the sensor. There
seems to be no simple way to deal with this issue at planning
time since, by definition, unexpected objects are unknown at
that time. Actually, if all environment features were hidden, no
localization would be possible other than pure dead-reckoning.
If unexpected objects are relatively sparse, a path generated
by the SUF-based planner is likely to offer enough features
to the sensors to allow safe tracking even if some of these
features turn out not visible. In any case, on the average, such
a path will certainly be better than a path generated without
‘consideration for the environment features.

Another issue to consider is that unexpected obstacles
hidding environment features may result in matching errors,
yielding large localization errors. However, our experience
with the implemented dynamic localization function is that
matching errors can be avoided for the most part by using the
computed uncertainty regions to eliminate blatantly inconsis-
tent sensory data. This is done as follows: At step 1) of the
function (see Section VI), whenever we associate a point in the
model to a sensed point, we verify that the distance between
the two is compatible with the current uncertainty; if it is not,
the sensed point is discarded.

Reliability of Sensor: We assumed that the sensor is quite
reliable. But an actual sensor may fail to detect edges, or detect
spurious edges, or generate incorrect matches between detected
edges and the input world model. The notion of reliability is
different from that of precision, suggesting that a “sensory
(un)reliability field” should be introduced to complement the
sensory uncertainty field. More sophisticated sensor models
have been developed in the literature (e.g., see the model of a
sonar range sensor proposed in [43]). However, it is still not
clear how such models can be used at planning time.

In our experiments, the combination of a line-striping range
sensor, clear obstacles, and a two-step dynamic localization
function turned out very reliable, and the above issue did not
arise. Other environments (e.g., outdoor environments with
bushes and trees) and other sensors (e.g., a more general vision
sensor) would probably not be so favorable.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 16, NO. 10, OCTOBER 1994

Errors in Robot Control: The planner computes a path by
minimizing a cost function. However, errors in control lead
the robot to depart from this path and follow another path
along which the SUF may be slightly different (especially
at configurations where the SUF varies sharply). One way
to alleviate this problem is to average the value of the
function F' at a configuration with its values at neighboring
configurations. Another way is to avoid regions with small
expected errors if they are too close of regions with high
expected errors. Preimage backchaining (see Section II), which
explicitly models control uncertainty, seems to address this
issue in a neater way.

Dealing with Gaps in Accurate Sensing: Areas where
sensing is inaccurate may considerably affect the generated
path, while, if they are not too large, they could be traversed
safely using dead-reckoning. One way to deal with this
issue is to combine the methods of this paper with preimage
backchaining. As suggested in [34], the magnitude of the SUF
could be thresholded to construct “islands™ (called landmark
areas in [34]) in which sensing and control are very precise.
Preimage backchaining would then be used to connect the
goal to the initial configuration through these islands assuming
some bounded (but possibly large) control errors outside the
islands. A simple variant of this approach would consist of
thresholding the SUF, building the connected regions with low
expected errors, discarding the small regions, and planning
a path as a sequence of motions through centers of mass of
remaining regions.

Tracking Walls: Our planning method favors areas where
sensing is accurate in all directions. This is a drawback when
the workspace contains long walls. Indeed, a wall can be
tracked reliably, from one end to the other, even if position
sensing along the direction parallel to the wall is not good. This
requires reasoning about individual parameters of the robot’s
configuration and about the fact that it does not matter that
the localization error along a direction grows large, provided
that a feature will eventually appears to reduce this error.
By decomposing the workspace into areas, according to the
number of edges that can be seen by the sensor, the planning
method of [42] allows wall tracking, suggesting a similar
extension to our method.

VIII. CONCLUSION

In this paper, we have described a new approach to motion
planning with uncertainty. This approach consists of estimating
the uncertainty in the configuration that will be computed by
the robot sensors, in the form of a sensory uncertainty field
(SUF), and using this field to compute a path that minimizes
a function combining expected errors and path length. The
approach was implemented in a planner and experiments have
been conducted with mobile robots equipped with a horizontal
line-striping range sensor. Experiments with the planner alone
show that very different paths can be generated depending on
how we weigh path reliability versus path length. The speed
of rotation relative to translation is another important factor
determining the shape of the generated paths. Experiments
with real robots showed that paths produced by the SUF-

TAKEDA et al.: PLANNING THE MOTIONS OF A MOBILE ROBOT IN A SENSORY UNCERTAINTY FIELD

p=0
0e(0,2m)

s

Fig.17. Parameterization of a line.

based planner can usually be tracked with higher precision than
other paths. We recognize, however, that the success of our
experiments was partially due to good-quality sensing (laser
line-striping with clear obstacies). Although all issues raised
by the SUF-based planning approach have not been completely
explored, we believe that it provides a reasonable and practical
alternative to previously proposed motion planning approaches
in the mobile robotic context. As discussed in Section VII, it
could also greatly benefit from being combined with other,
separately developed techniques.

IX. APPENDIX A
LINE-FITTING MODEL

Consider Fig. 1 discussed in Section IV-A. The robot can
use the coordinates of the 2n+1 sensed points P; to fit a line ¢/
through them and estimate the orientation ¢ = ¢ of the sensor
and the distance d from the center O to the environment line £.
The uncertainty in these estimates depends to some extent on
the particular line-fitting algorithm that is used to compute £'.
In our planner, the SUF is computed assuming the following
eigenvector algorithm [16]. This algorithm generates a line £/
that minimizes the sum of the squared perpendicular distances
from the points P; to £'.

Let us express the equation of the best-fit line £’ as:

zcosf+ysind—p=0

with p > 0 and 0 € [0, 27) defined as shown in Fig. 17. Then
the perpendicular distance ¢; from P; to £ is:

g = |zicosf + y;sinb — p|.

In order for the sum of the squared distances, £ =). €2, to
be minimum, we must have:

p=) (zicos6+y;sind)/(2n +1).

Hence, the equation of ¢’ can be expressed as:
(x —Z)cosf+ (y— §)sinfd = 0,

with:

i > zif(2n+1),
7= Yu/ent),

which makes explicit that ¢’ passes through the mean of the
sensed points (z;,y;)-

1015

To establish the equation of ¢ we still have to

determine 6. Let:

v; = —| _andw=|". .
Yi 7 sin f

Then the sum of the squared distances can be written as:
Y = w(T,vielnw.

We let S denote the symmetric matrix), v;v!".

The vector w which minimizes the quadratic form w'" Sw
subject to ||w|| = 1 is the eigenvector of S associated with
the smallest eigenvalue [16].

S is of the form:
Sz 81 S3
83 8o |’

E =

where
s1 = Y(zi—2)?
82 = E(yi—ﬂ)27
s3 = 2(zi—Z)(yi —7)

Assume that s3 # 0 (then, both s; and s, are also nonzero).
Then the smallest eigenvalue of S is:

S1 + 89 — (31 - 82)2 -+ 48%
5 .

Ao =

The associated eigenvector [w;, wo]"" satisfies:
s1w1 + s3w2 = Agw;.

Since we assumed sz # 0, we derive:
—1 [W2
§ =tan"! | —=
w1
- 82 — 81 —
=tan~! (

If s3 = 0 and s; = 0, then all the z;’s have the same value
Z; hence, we have § = 0. Similarly, if s3 = 0 and sz = 0, we
have § = 7/2. If s3 = 0, 57 # 0, and sy # 0, the points P
are evenly distributed around their mean, and we cannot infer
a best value of 6. By construction, the case where s; and s
are simultaneously zero is impossible.

From the above equations, we obtain the following estimates
¢* and d* of ¢ and d:

(82 - 31)2 -+ 48%
283 '

()b* = afg(flfo,yo) - 07
d* = p,

where arg(z, y) denotes the argument of the complex number
z = x + jy.
The errors in these estimates are:

66 = d—¢* = 0,
od d—d* = d—|Zcosf+ gsind|.

I

1016

APPENDIX B
PROPERTIES OF THE FUNCTION w4y 4 »

From the assumptions on the random variables R; stated
in Section IV-A and the equations defining §¢ and éd given
above, we derive that:

u—¢,d,n(6¢7 §d) = u¢,d,n(“5¢7 6d)a
u¢,d,n(6¢7 6d) = u¢,1,n(6¢7 (6d)/d)7

These relations allow us to precompute and tabulate fy 4.,(A)
(see Fig. 5) for positive values of ¢ and d = 1, and use the
constructed table to compute fy 4,(A) for other values of ¢
and d (see Section IV-B). The first of the above two relations
is obvious. We prove the second one below.

Let us consider two sets of 2n -+ 1 points, {(z;,y;)} and
{(X:,Y:)}, such that:

z; =141,

Y; = x; tan ¢y,
and

Xi=d- z,
Yi=d-y.

~In the following, X, Y, S1, Ss, S3, ©, 6®, and 6D have
the same definition as z, g, s1, $2, 3, 8, 6¢, and 6d, except
that they apply to the set {(X;,Y;)}, instead of {(z;,y;)}. We
have:

X=d-z,
Y =d- g7
Si = d2 * 8.
Thus:
60 =0
— tan-! S — 8 — \/(SQ —51)2 +452
2553 ’

which yields:

0P = b¢.

On the other hand, we have:

6D =d~|X cos® + Vsin©)|
=d-(1—|Zcosf+ gsinb|)
—d- (5d).

Therefore:

Ug,dn(6¢,0d) = up 1 ,(8¢,(6d)/d).

(1]
[2
(3]

[4

[5

—

(7

{8

[9]

(1]

[11]

[12]

[13]

(14]

{15]
(16]
(17

(18]
{19

[20]
(21]

[22]

{231

[24]

[25]

[26]

271

[28]

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 16, NO. 10, OCTOBER 1994

REFERENCES

A. V. Aho, J. E. Hopcroft, and J. D. Ullman, Data Structures and
Algorithms. Reading, MA: Addison-Wesley, 1983,

N. Ayache, Artificial Vision for Mobile Robots: Stereo Vision and Multi-
sensory Perception. Cambridge, MA: The MIT Press, 1991.

B. Bhanu and O. D. Faugeras, “Shape matching of two-dimensional
objects,” IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-6, no.
2, pp. 137-156, 1984.

S. 1. Buckley, “Planning and teaching compliant motion strategies,”
Ph.D. dissertation, Dep. of Elec. Eng. and Comput. Sci., MIT, Cam-
bridge, MA, 1986.

P. Caloud, W. Choi, J. C. Latombe, C. Le Pape, and M. Yim, “Indoor
automation with many mobile robots,” in Proc. IEEE Int. Workshop
Intelligent Robots and Syst., Tsuchiura, Japan, 1990, pp. 67-72.

J. F. Canny, “On computability of fine motion plans,” in Proc. IEEE
Int. Conf. Robotics and Automat., Scottsdale, AZ, 1989, pp. 177-182.
R. Chatila and J. P. Laumond, “Position referencing and consistent world
modeling for mobile robots,” in Proc. IEEE Int. Conf. Robotics and
Automat., St. Louis, MO, 1985, pp. 138-145.

W. Choi and J.C. Latombe, “A reactive architecture for planning
and executing robot motions with incomplete knowledge,” in Proc.
IEEEIRSJ Int. Workshop on Intell. Robots and Syst., Osaka, Japan, 1991,
pp. 24-29.

C. K. Cowan and P. D. Kovesi, “Automatic sensor placement from
vision task requirements,” IEEE Trans. Pattern Anal. Machine Intell.,
vol. PAMI-10, no. 3, pp. 407-416, 1988.

J. L. Crowley, “world modeling and position estimation for a mobile
robot using ultrasonic ranging,” in Proc. IEEE Int. Conf. Robotics and
Automation, Scottsdale, AZ, 1989, pp. 674-680.

R. S. Desai, “On Fine Motion in Mechanical Assembly in Presence of
Uncertainty,” Ph.D. dissertation, Dep. of Mech. Eng., Univ. of Michigan,
1988.

B. R. Donald, “A geometric approach to error detection and recovery
for robot motion planning with uncertainty,” Artificial Intell. J., vol. 37,
no. 1-3, 1988, pp. 223-271.

B. Donald and J. Jennings, “Sensor interpretation and task-directed
planning using perceptual equivalence classes,” in Proc. IEEE Int. Conf,
Robotics and Automat., Sacramento, CA, 1991, pp. 190-197.

B. Donald and J. Jennings, and R. Brown, “Constructive recognizability
for task-directed robot programming,” J. Robotics and Autonomous Syst.,
vol. 9, pp. 41-74, 1992.

M. Drumbeller, “Mobile Robot Localization Using Sonar,” Tech. Rep.
826, Al Lab., MIT, 1985.

R. O. Duda and P. E. Hart, Patrern Classification and Scene Analysis.
New York: John Wiley, 1973.

B. Dufay and J. C. Latombe, “An approach to automatic robot program-
ming based on inductive learning,” Int.J. Robotics Res., vol. 3, no. 4,
pp. 3-20, 1984.

H. Durrant-Whyte, “Uncertain geometry in robotics,” J. Robotics Au-
tomat., vol. 4, no. 1, pp. 23-31, 1988.

A. Elfes, “Dynamic control of robot perception using multi-property
inference grids,” Proc. IEEE Int. Conf. Robotics and Automation, Nice,
France, 1992, pp. 2561-2567.

M. E. Erdmann, “On motion planning with uncertainty,” Tech. Rep.
810, Al Lab., MIT, 1984.

M. E. Erdmann, “On probabilistic strategies for robot tasks”, Ph.D.
dissertation, Tech. Rep. 1155, Al Lab., MIT, Cambridge, MA, 1990,
M. E. Erdmann and M. T. Mason, “An exploration of sensorless
manipulation,” in Proc. IEEE Int.Conf. Robotics and Automat., San
Francisco, CA, 1986, pp. 1569-1574.

C. Facchinetti, “Motion planning and control with uncertainty while
sensing the environment,” in Proc. Swiss Vision Conf., Zurich, Switzer-
land, Sept. 1993, pp. 45-52. Also published in Proc. ICSPAT’ 93, Santa
Clara, CA, Sept. 1993.

A. Fox and S. Hutchinson, “Exploiting visual constraints in the synthesis
of uncertainty-tolerant motion plans,” Tech. Rep. UIUC-BI-AI-RCV-92-
05, Univ. of Illinois at Urbana-Champaign, Oct. 1992,

S. N. Gottschlich and A. C. Kak, “Dealing with uncertainties in CAD-
based assembly motion planning,” in Proc.9th Nat. Conf. Artificial
Intell., AAAI Press, 1991, pp. 646-652.

W. E. L. Grimson and T. Lozano-Pérez, “Localizing overlapping parts
by searching the interpretation tree,” /EEE Trans. Pattern Anal. Machine
Intell., vol. PAMI-9, no. 4, pp. 469-482, 1987.

L. Guibas, R. Motwani, and M. Raghavan, “The robot localization
problem in two dimensions,” in Proc. Symp. of Discrete Algorithms
(SODA), 1991, pp. 259-268.

S. Hutchinson, “Exploiting visual constraints in robot motion planning,”
in Proc. IEEE Int. Conf. Robotics and Automat., Sacramento, CA, 1991,

TAKEDA et al.: PLANNING THE MOTIONS OF A MOBILE ROBOT IN A SENSORY UNCERTAINTY FIELD 1017

{29]

(30]
[31]

132]

[33]
[34]

QEN

(36]

(371

(38]
(39]

[40]

[41]

142]

[43]

[44]

[45]

{46]

[47]

[48]

[49]

[50]

[51]

[52]

pp. 1722-1727.

D. J. Kriegman, E. Triendl, and T. O. Binford, “*Stereo vision and navi-
gation in buildings for mobile robots,” IEEE Trans. Robotics Automat.,
vol. 5, no. 6, 792-803, 1989.

J. C. Latombe, Robot Motion Planning. Boston, MA: Kluwer Aca-
demic Publishers, 1991,

J. C. Latombe, A. Lazanas and S. Shekhar, “Robot motion planning
with uncertainty in control and sensing,” Arificial Intell. J., vol. 52, no.
1, pp. 147, 1991.

C. Laugier and P. Théveneau, “Planning ssensor-based motions for part-
mating using geometric reasoning techniques,” in Proc. European Conf.
Artificial Intell., Brighton, UK, 1986.

A. Lazanas and J. C. Latombe, “Landmark-based robot navigation,” in
Proc. 10th Nat. Conf. Artificial Intell., San Jose, CA, 1992 pp. 816-822.
, “Landmark-based robot navigation,” Tech. Rep., Dep. of Com-
put. Sci., Stanford Univ., 1992.

J. J. Leonard and H. F, Durrant-Whyte, “Mobile robot localization by
tracking geometric beacons,” IEEE Trans. Robotics Automat., vol. 7,
no. 3, pp. 376-382, 1991.

J. J. Leonard, H. F. Durrant-Whyte, and I. J. Cox, “Dynamic map
building for an autonomous mobile robot,” /nt. J. Robotics Res., vol.
11, no. 4, pp. 286-298, 1992.

T. S. Levitt, D. T. Lawton, D. M. Chelberg, and P. C. Nelson, “Qualita-
tive navigation,” in Proc.DARPA Image Understanding Workshop, Los
Angeles, CA, 1987, pp. 447-465.

T. Lozano-Pérez, “The design of a mechanical assembly system,” Tech.
Rep. AI-TR 397, Al Lab., MIT, Cambridge, MA, 1976.

T. Lozano-Pérez, M. T. Mason, and R. H. Taylor, “Automatic synthesis
of fine-motion strategies for robots,” Int. J. Robotics Res., vol. 3, no.
1, pp. 3-24, 1984.

V. Lumelsky and T. Skewis, “Incorporating range sensing in the robot
navigation function,” /EEE Trans. Syst., Man, Cybern., vol. 20, no. 5,
pp. 1058-1069, 1990.

S. Mahadevan and J. Connell, “Automatic programming of behavior-
based robots using reinforcement learning,” Res. Rep., IBM T. J. Watson
Res. Center, Yorktown Heights, NY, 1990,

D. Miller, A spatial representation system for mobile robots,” in Proc.
IEEE Int. Conf.Robotics Automat., St. Louis, MO, 1985, pp. 122-127.
H. Moravec and A. Elfes, “High resolution maps from wide angle
sonar,” in Proc. IEEE Int. Conf. Robotics Automat., St. Louis, MO,
1985, pp. 116-121.

Y. Nakamura and Y. Xu, “Geometrical fusion method for multi-sensor
robotic systems,” Proc. IEEE Int. Conf. Robotics Automat., Scottsdale,
AZ, 1989, pp. 668-673.

N. J. Nilsson, Principles of Artificial Intelligence. Los Altos, CA:
Morgan Kaufmann, 1980.

J. Pertin-Troccaz and P. Puget, “Dealing with uncertainty in robot
planning using program proving techniques,” inRobotics Research 4.
Cambridge, MA: The MIT Press, 1988, pp. 455-466.

Y. Roth, A. A. Wu, R. H. Arpaci, T. Weymouth, and R. Jain, “Model-
driven pose correction,” in Proc. IEEE Int. Conf. Robotics Automat.,
Nice, France, 1992, pp. 2625-2630.

A. Sabater and F. Thomas, “Set membership approach to the propagation
of uncertainty geometric information,” in Proc. IEEE Int. Conf. Robotics
Automat., Sacramento, CA, 1991, pp. 2718-2723.

H. Takeda and J. C. Latombe, “Sensory uncertainty field for mobile robot
navigation,” in Proc. IEEE Int.Conf. Robotics Automatr., Nice, France,
1992 pp. 2465-2472.

, “Planning the motions of a mobile robot in a sensory uncertainty
field,” Rep. No. STAN-CS-92-1424, Dep. of Comput. Sci., Stanford
Univ., Apr. 1992,

K. Tarabanis, R. Y. Tsai, and P. K. Allen, “Automated sensor planning
for robotic vision tasks,” in Proc. IEEE Int. Conf. Robotics Automat.,
Sacramento, CA, 1991, pp. 76~82.

R. H. Taylor, “Synthesis of manipulator control programs from task-
level specifications,” Ph.D. dissertation, Dep. of Comput. Sci., Stanford
Univ., 1976.

[53] S. Xie, “View planning for mobile robots,” Proc. IEEE Int. Conf.
Robotics Automat., Cincinnati, OH, 1990, pp. 748-754.

[54] Z. Zhang and O. Faugeras, “A 3D world model builder with a mobile
robot,” Int. J. Robotics Res., vol. 11, no. 4, pp. 269-285, 1992,

[55] 1. Y. Zheng, M. Barth, and S. Tsuji, “Autonomous landmark selection for
route recognition by a mobile robot,” in Proc. IEEE Int. Conf. Robotics
Automat., Sacramento, CA, 1991, pp. 2004-2009.

Haruo Takeda (M’90) received the B. Eng. de-
gree in mathematical engineering and information
physics from the University of Tokyo, Japan, in
1980.

He joined the Systems Development Laboratory
of Hitachi, Ltd., Kawasaki, Japan in 1980, where
he is currently a senior research scientist and the
leader of the visual information processing group.
From 1990-1992, he was a visiting scholar at the
Robotics Laboratory, the Department of Computer
Science, Stanford University. His research interests
include mobile robot navigation, motion planning with uncertainty. shape from
motion, model-based vision of animal action, some early vision algorithms,
document recognition systems, computer graphics, and animation.

Mr. Takeda is a member of the ACM, the Information Society of Japan,
and the Institute of Electronics, Information, and Communication Engineers.

Claudio Facchinetti was born in Neuchatel,
Switzerland, on March 30, 1967. He received the
applied physics degree in 1990 from the University
of Neuchatel.

In 1990, he joined the Institute of Microtechnol-
ogy in Neuchitel, where he is currently working
towards the Ph.D. degree in computer vision. From
March 1992 to February 1993, he was a visiting
research scientist in the Robotics Department of
Stanford University, where he worked with Prof,
J.-C. Latombe. His research interests include vision-
based behaviors for mobile robots, autonomous navigation, vision sensors,
and image processing.

Jean-Claude Latombe received the B.S. and M.S.
degrees in electrical engineering and the Ph.D. de-
gree in computer science from the National Poly-
technic Institute of Grenoble, in 1969, 1972, and
1977, respectively.

He is currently a Professor of Computer Science
at Stanford University, where he is also the Director
of the Conmiputer Science Robotics Laboratory. From
1980 to 1984, he was a faculty member at Ecole
Nationale Superieure d’Informatique et de Math-
ematiques Appliquees de Grenoble (ENSIMAG).
From 1984 to 1987, he was the executive president of Industry and Technology
for Machine Intelligence (ITMI), a company that he cofounded in 1982
for commercializing robot systems and expert systems. His current research
interests lie mainly in geometric computing and its applications to automated
assembly, mobile robot navigation, design, graphic animation, and computer-
assisted surgery.

