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Abstract. The goal of our research is to 
improve 3-D computer vision by adequate 
use of knowledge, control and sensing. 
After a presentation of our approach to 3-D 
vision, we describe a first experimental 
configuration that successfully recognises 
common objects like boxes and therefore 
demonstrates the feasibility of the approach. 
Then a more advanced configuration for the 
recognition of arbitrary objects is proposed 
and successful recognition experiments are 
shown. Finally, arriving at the practical 
impact onto applications, we  propose a 
framework to integrate robotics, virtual 
reality and 3-D vision in order to perform 
teleoperation. 

1. INTRODUCTION 

1.1. Objectives 
Our research aims at improving computer vision for 
applications that involve complex 3-D environments. 
Three elements are expected to contribute to this 
improvement: robust knowledge, adequate control, 
combined range and intensity imaging. 

Knowledge basically contributes to the vision by reducing 
significantly the search process and therefore can greatly 
improve the vision process. As  knowledge base, we use 
an extensive description of the world and of all objects it 
contains. While this knowledge is not readily available 
everywhere, it is already available in a number of 
applications like advanced manufacturing or 
teleoperation. 

In natural or artificial vision, control mechanisms are 
various and changing. Bottom-up and top-down are two 
basic commonly found ways to proceed. In our approach, 
we propose to combine the two basic approaches by 
providing both a bottom-up recognition based on range 
images and a top-down mechanism based on intensity 

images. 

Regarding the nature of the sensing, this research 
considers both intensity and range imaging. This choice is 
because range images provide a direct measurement of 
the 3-D geometry of the scene and therefore have the 
advantage to provide intrinsic shape features. Significant 
research work is devoted to the processing and 
interpretation of these range images. 

With above mentioned features, we developed a 
knowledge based 3-D vision configuration based on the 
extensive description of the world, a hypothesis 
generation and verification control scheme and sensing 
with combined range and intensity images. 

1.2. Research project 
Major milestones of our research are: 

• experimental configuration that recognises common 
objects like boxes and demonstrates the feasibility of 
the approach 

• advanced 3-D vision approach that extends the 
capability of above system in its ability to recognise 
objects of arbitrary shapes 

• integration of vision in experimental setups 

2. APPROACH TO 3-D VISION 

The approach to 3-D vision we investigate and propose 
uses extended knowledge of the scene and applies a 
hybrid hypothesis generation and verification control 
scheme that combines range and intensity imaging. 

Key elements of our investigations relate to the range 
image based 3-D vision environment used to generate 
hypotheses, the virtual world used as a knowledge base 
and the matching of real and synthetic images which is 
used to perform verification.  

2.1. Knowledge-based system 
According to this approach, the main knowledge is in 
form of a full description of the world where vision is 
performed. This description is also known as the virtual 
world. It includes object models that are adequate for the 
purpose of vision and topological descriptions. 
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2.2. Hybrid hypothesis  generation and 
verification  
The hybrid hypothesis generation and verification control 
scheme is illustrated in figure 1. The acquisition module 
provides information from the real world as both intensity 
and range images. The range information is used in the 
hypothesis generation module which is responsible for 
providing  hypotheses, in the form of an estimate of pose 
and class of an object. The module generates hypotheses 
in the sense that the solutions it provides are not 
necessarily unique nor do we expect they are fully correct. 
This assumption alleviates the constraints on 3-D 
recognition and permits to make the respective 
recognition module simple and fast. 

Further on the processing path we find the hypothesis 
verification module. Its purpose is to verify the validity of 
each emitted hypothesis. It does so by comparing the real 
intensity image with a synthetic image generated 
according to the hypothesis interpretation. This 
interpretation involves the knowledge about objects and 
world, shortly labelled as models in figure 1. The final 
result is a set of verified and compatible hypothesises. 

2.3. System architecture 
Figure 2 shows the overall system architecture, with its 
four main modules. 

The acquisition module delivers range and intensity 
images. Figure 3 shows typical examples. It comprises a 
camera for standard imaging and a range imaging device 
that involves a pair of camera and light projector  and 
operates according to the principle of structured light. 

Module Labo3D is a universal development platform with 
a set of methods and tools performing 3-D object 

recognition. In the configuration shown, it performs pose 
estimation from range images and provides the 
hypothesis about identity and pose of observed objects. 

Module 3D-MBA implements a 3-D model-based 
approach to vision. It provides general means to generate 
synthetic views of an arbitrary collection of known objects 
and to compare synthetic and real views. In the 
configuration shown, it operates in the hypothesis 
verification mode. 

The knowledge module encompasses the object models 
and the virtual world. Object and world knowledge is in 
form of a compound model combining vision and 
rendering parameters; it is implemented as a blackboard. 

 

2.4. Labo3D 
Functionally, Labo3D performs 3-D shape recognition 
from range images [6] [8|. It proceeds in three main steps. 

Segmentation. First a segmentation method finds 
smooth surface patches in the range image by using an 
algorithm detecting local discontinuities. We call patch 
each smooth and connected set of rangels (range image 
element). The patches are always considered flat. Thus a 
plane is fitted on each patch and segments are built by 
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Figure 1: Range and intensity imaging in the 
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Figure 2: Simplified architecture of the experimental 

vision system  
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merging neighboring coplanar patches. This is useful to 
keep together planar patches that were split into two or 
several patches in the previous segmentation. 

Segment grouping. Then, patches are grouped into 
sets of few patches to be used as primitives. The idea is to 
group together neighboring orthogonal segments. The 
method used looks for orthogonal segments and searches 
to group them into groups of either 3 or 2 orthogonal 
segments, which are the primitives. 

Structural matching. Finally, a structural matching 
[1] [2] step searches for correspondence of primitives and 
models. In the case of box-shaped objects, the method 
used  builds boxes from the primitives and estimates size 
and pose of the box. 

Figure 4 illustrates pose estimation as performed by 
Labo3D. The example shown provides 5 significant 
segments from which 3 form a significant group. In d), the 
estimated box built-up as already described, fits well the 
original range image.  

Robustness to noise is an important topic in these 
methods, as suggested by this simple example [10]. 

2.5. Segmentation methods 
Segmentation methods for range images were intensively 
investigated in the frame of this research. The objective is 
a relative robust method with low complexity. A 
comparative analysis of methods was performed and led 
us to selected three different methods for segmenting 
range images into surface patches. The emphasis is on 
data-driven segmentation of range images into smooth or 
planar patches  [16] . 

One of the selected methods results from the in-depth 
study of data-driven segmentation methods developed in 
our lab as a thesis work [10]. The method has the special 
feature to adapt its parameters to the range image noise 
and was shown to perform particularly well in a wide 
class of different range images.  

2.6. Modeler 
In order to generate object models we need to take into 
account the most outstanding properties of the real 

objects. Models are twofold. The first part reflects the 
geometry of the object. The second part defines what we 
call the attributes of the object, among which there are the 
photometric attributes, describing the way the object 
interacts with light. Further attributes like degrees of 
freedom and levels of complexity contribute to improve 
the scene interpretation process.  

To generate the geometric database, 3 different techniques 
have been used. The first uses the conventional technique 
of defining objects with the keyboard. It is generally 
considered as tedious. The second and so far the most 
interesting technique uses 3-D geometric databases of 
different commercial CAD packages. EXPLORE, the  
software developed by Thomson Digital Image and used 
by our system, is able to read different CAD-CAM 
standards. The advantage of this solution, especially in 
the case of automated assembly, is that we can take full 
advantage of the work already done and to rely on a 
precise and complete database of objects. The third 
technique relies on the use of 3-D scanners which are used 
more and more often when the outer surface dimensions 
of an object have to be determined. 

After being modelled, an object is manipulated by a script 
that allows the user to describe the topology of a scene. 
The script is the world knowledge database and can be 
summarise as a set of statements describing the objects, 
their position in the scene, the position, orientation of 
camera and lights and so on. We then compose a scene by 
instancing these objects at various locations. Objects are 
then manipulated by moving the referential attached to 

 

Figure 3: a) Intensity image  b) Range image 

 

a)  Range image  b) Segments  

 

c) Group of segments d) Estimated pose (x 2.5) 

Figure 4: Pose estimation from a range image 
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them within a common reference frame. 

2.7. 3D-MBA 
Rendering. In the synthetic world we can use 
several different techniques to generate the interaction of 
light sources with objects. For example, using a method 
like radiosity, we try to create a perfectly diffuse world. 
Our system uses more classical render techniques such as 
scan line algorithms or ray tracing [22]. 

Correlation. The matching process is the task of 
finding a set of salient features, in a given image, that 
matches the model's features. It proceeds in two steps. 

Analysing the range image we verify the main feature and 
we roughly determine the region occupied by the object, 
its possible dimension and its orientation. By doing so we 
First we find what we call regions of interest. These are 
the regions of the image where something is happening. 
To find them, we verify the main features in the image 
and we roughly determine the region occupied by the 
object. These regions will help to speed up the search 
process by excluding non interesting zones of the image.  

Then, the object is rendered and classical correlation is 
applied between the virtual model and the real scene. 

Speed up. For rendering, the geometric database 
does not always need to be considered entirely. What is 
necessary is be task dependent. If we know what type of 
information will be required by the vision system we can 
set the highest resolution necessary to perform the task. 
This can be done a priori, on-line or off-line. By a priori 
we mean that the resolution is fixed during the modelling. 
We decide that certain given details are not relevant for a 
search; this means, for example, that either the cost to take 
them into account or to handle them during the rendering, 
is too high. Adaptation can also be done on-line either 
with dedicated techniques which simplify the geometric 
information or with techniques used during the 
rendering. The adaptation can also be done off line using 
the hierarchical representation defined during the 
modelling. We can then use conventional simplification of 
the trees encoding the hierarchy. 

Several techniques are used to speed up the correlation 
between virtual and real images. One of the methods, is to 
choose a salient correlation feature in order to assure a 
useful recognition based on the correlation results. In 
figure 5 the logo BASFTM is a salient correlation feature 
that will ensure the correct object recognition. 

3. EXPERIMENTS IN 3-D VISION 

3.1. Basic recognition 
In this experiment we apply the 3-D vision approach 
described in figure 2 to recognise boxes in 3-D scenes. The 
experiment considers floppy boxes of two brands. Figure 

3 is a typical example of a pair of range and intensity 
images as they result from the acquisition module. We 
recognise overlapping boxes. Subsequent analysis of the 
range image gives rise to three hypotheses for boxes as 
shown in the figure 5. Verification involves correlation 
tests for all hypotheses and for all the compatible 
geometrical configurations of  two brand of boxes. The 
two correct hypotheses are accepted and the third is 
rejected. 

3.2. Ambiguous objects 
Boxes are among the common objects which are generally 
ambiguous by their sole shape. Beyond shape, texture 
information is necessary in order to recognise them.  In an 
experiment to demonstrate the capability of our system to 
handle ambiguous objects, the system performs standard 
recognition of a floppy box and displays the 
corresponding synthetic image, showing the correct 
position of the printing on the box (figure 6). 

3.3. Generic boxes 
Another experiment demonstrates the recognition of 
generic boxes, i.e. parallelepipeds of any size. Figure 7 
illustrates various steps of the recognition task. Starting 
from the real scene recorded as range images b) the 
segmentation process produces the segments represented 
together with their normal vector in c). Structural 
matching with the model of a generic box results in the 
recognised boxes shown in d). This example illustrates the 
performance of the system to recognise boxes of arbitrary 
sizes and in arbitrary positions, and more specifically to 
recognise objects seen under degenerated views, as is the 
case with the small cube located in the centre of figure 7. 
The size estimation error of the objects is in the order of 
5%. 

 

Figure 5: Hypothetical poses 
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3.4. Recognition of objects on complex 
backgrounds 
Hypothesis verification. To achieve the results shown in 
figure 8, our system uses prediction-verification 
processes. 

At the range image stage, the system builds a set of 
hypotheses about the objects present in the scene and then 
proceeds by trying to confirm/reject them. Newly 
developed range image segmentation techniques 
(described above) will extract edges and surfaces for 
feature checking. If any part of the hypothetical object is 
missing, the system uses the object model to predict the 
shape, location and orientation of the missing part. Using 
the a priori knowledge and the depth map it will extract 

the size and exact positioning of both objects (figure 1c). 
At this step both objects are recognised in a purely 
geometrical way. For examples see [12]. Next this 
information is used to construct a more realistic 3-D 
model (the virtual image figure 8d) using the geometrical 
database and the available photometric attributes. Finally, 
last recognition is performed by cross correlating the 
virtual image and the real CCD camera image (figure 8 a). 

4. ADVANCED 3-D VISION 

4.1. Towards the recognition of arbitrary 
objects 
The recognition approach characterised by the traditional 
segmentation, grouping and matching scheme presented 
in figure 2 has a major drawback. Because it relies on the 
use of robust primitives like the planar patches available 
in box-shaped objects, and du to the fact that such simple 
primitives are often simply not available for the objects of 
interest, the generalisation of this scheme to arbitrary 
objects is difficult. 

An important point of our investigation relates to the 
possibility of matching arbitrary 3-D shapes. The Iterative 
closest point algorithm (ICP [20]) being such a tool that 
allows to compare 3-D shapes directly, without the need 
to use intermediate representations, we currently study 
the possibilities to integrate this method into our 
recognition approach. 

  

a) recognised box b) synthetic view 

Figure 6: Correct recognition of ambiguous objects 

  

a)  intensity image  b) range image 

  

d) segments and normals  c) recognised boxes 

Figure 7: Recognition of generic boxes 

 

a) real image  b) range image 

 

c) recognised objects d) synthetic view 

Figure 8: Object recognition example using 3D-MBA and 
range images 
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A first study was launched in order to investigate the 
behaviour and performance of the ICP algorithm in the 2-
D recognition tasks. Special attention was given to the 
study of the recognition of complete and partial shapes. 
The study considers the practical application of the 
recognition of puzzle parts [9].  

We report experiments were the ICP-algorithm has been 
used for the recognition of boxes measured by range 
images. Figure 9 illustrates the result of an experiment 
where the measured set of point from a range image is 
matched with a model. In the figure, the Balisto-box 
represents the experimental data set, and the grey box on 
the bottom is the model. The wire-frames illustrate the 
successive positions of the model, as it is iteratively 
moved onto the measured data set during the execution of 
the algorithm. This example illustrates a successful 
recognition and suggests good perspectives for the use of 
this method for complex objects. 

4.2. Towards 3-D vision in VRRE 
Reading the phrase of  J.C. Craig  [23]  “ In order to make 
the description of manipulator motion easy for a human 
user of a robot system, the user shouldn’t be required to 
write down complicated functions of space and time to 
specify the task ” one can easily understand the huge 
potential of Virtual Reality in a Robotics Environment 
(VRRE). VRRE gesture via dedicated peripherals can be 
used for robot guidance or trajectory generation; visual 
control permits to evaluate the command execution 
efficiency. 

Because a virtual system is only effective if environment 
changes and object movements are fed-back to the 
manipulating system, some kind of sensoric feedback is 

required to perform this task. Virtual reality being a 3-D 
model of the world, the use of a 3-D model-based vision is 
highly desirable to help VR to cope with real worlds. 

In the field of virtual reality, vision and robotics, we 
presently have developed an experimental environment 
that allows to program industrial and mobile robots in a 
VR  environment [19] [13]. 

It consists of an industrial 5-axis robot, its virtual 
equivalent and a model-based vision system used in the 
sensoric  feed-back loop. The user is immersed in a 3-D 
space built out of models of the robot's environment. He 
directly interacts with the virtual "components", defining 
tasks and dynamically optimising them. A model based 
vision system locates objects in the real workspace to 
update the VRRE through a bi-directional communication 
link. 

In order to enhance the capabilities of the VRRE, a reflex-
type behavior based on vision has been implemented. By 
locally (independently of the VRRE) controlling the real 
robot, the operator is discharged of small environmental 
changes due to transmission delays. Thus once the tasks 
have been optimised on the VRRE, they are sent to the 
real robot and a semi autonomous process ensures their 
correct execution thanks to a camera directly mounted on 
the robot's end effector. On the other hand if the 
environmental changes are too important, the robot stops, 
re-actualises the VRRE with the new environmental 
configuration, and waits for task redesign. 

Figure 10 illustrates the developed VRRE. On the left we 
see the VRRE system together with its 3-D input devices; 
on the right, we see the real robot, its controller and the 
model-based vision system. Our vision system has 2 
cameras: one on top of the robot's working area, giving a 
global view of the working space; the other one mounted 
on the end effector, used for close view analysis. So far the 
implemented model-based vision is 2-D. 

Figure 9: Matching by ICP 

 

Figure 10: Implemented VR robotic environment (VRRE) 
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4.3. Towards 3-D vision in assembly 
The presented results show the way to improved 
performance and applicability of knowledge-based 3-D 
vision. On this way, we arrive next to the problem of 
recognition and manipulation of 3-D objects in a 
perspective of application in assembly. Figure 11 
represents the range image of a tape roll to be used in next 
experiments on 3-D vision. 

5. VALORISATION 

5.1. Publications and presentations 
This research was made publicly available by various 
papers, proceedings, conferences and other means as 
given below. 

Research results were presented at national and 
international conferences [1] [2] [3] [5] [6] [7] [8] [11] [12] 
[13]. Many results are also reported in proceedings and in 
journals as well [1] [2] [3] [6] [7] [8] [11] [12] [13] [14] and 
two Ph.D thesis are tightly related to the present research 
work [4] [10]. Additional results are available in technical 
reports [9] [15] [16] [17] [18] [19] [24]. 

In addition, results on the exploitation of 3D information 
have been presented in several laboratories in the USA 
[15]. 

5.2. Collaboration with other research 
teams 
The collaboration between the three research teams in 
Computer vision (T. Pun, CUI-Université de Genève and 
F. Ade, IKT-ETH Zürich being the two others) is 
significant and effective.  Visits and meetings gathering all 
participants of the research teams take place at regular 
intervals. Beyond simple exchange of information, the 
collaboration concerns the exchange of experience, 
images, software modules, etc. 

Of particular interest is KBVision, a tool for image 
processing and computer vision that is currently beeing 
used in the three research teams involved in the Priority 
Program. Benefits are multiple and various, ranging from 
software compatibility, ease of communication to 
software maintenance. 

Contacts reagarding this project exist with the NASA 
Ames Centre (Moffetfield, CA) and Unversité de 
Clermont Ferrand, France.  The common goal is the 
guidance of mobile and/or conventional robots by 3D 
vision. A collaboration based on an exchange of 
researchers is under way.  

5.3. Applications 
Model-based 3D vision is requested by a large number of 
applications: interpretation of complex 3-D scenes, 
surveillance, quality control.  

Model-based 3D vision is an ideal complement to virtual 
reality. The combination of both techniques opens new 
perspectives for the teleoperation of conventional or 
mobile robots, and for mechanisms operating on 
nanoworlds as well [14]. Because the operator interacts 
with the robotics system at a task oriented high level, 
VRRE systems are easily portable to other robotics 
environments (mobile robotics and micro assembly). 

5.4. Teleoperation NASA-EPFL 
A demonstration of teleoperation organised by IMT-EPFL 
together with NASA Ames Research Centre (Moffetfield, 
CA) was held in February 1994. The teleoperation 
combines vision, robotics and virtual reality. The 
experiment involves the operation of a real robot from a 
remote location with tools of virtual reality (VR). At the 
remote location, the user interacts with the synthetic robot 
he sees on a screen by means of VR tools. 

A particular feature of this demonstration is the use of 
vision in the vicinity of the robot. Vision is used as a 
feedback in a system that reports differences between the 
real and virtual world. The demonstration showed how 
real objects newly brought in the neighborhood of the 
robot are recognised and automatically introduced in the 
virtual world. 

Reports about this demonstration were widely diffused 
and also presented  to a wider technical as well as non 
technical public [5].  
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Figure 11: 3-D view of a tape roll 
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7. CONCLUSIONS 

We proposed and investigated a knowledge-based 
approach to 3-D vision applying a hybrid control scheme 
based on range and intensity imaging. The feasibility of 
this approach is demonstrated by a basic experimental 
configuration that successfully recognises common objects 
like boxes. A further step is set with the proposition of an 
advanced 3-D vision approach that uses generalised 
matching methods and also with the  successful 
demonstration of its practical use  for range images. 
Finally, the developed VRRE environment constitutes 
now  a testbed for challenging  knowledge-based vision 
tasks. 
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