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This paper investigates a new approach to the recognition of 3D objects of 
arbitrary shape. The proposed solution follows the principle of model-based 
recognition using geometric 3D models and geometric matching. It is an 
alternative to the classical segmentation and primitive extraction approach and 
provides a perspective to escape its difficulties to deal with free-form shapes. 
Using the iterative closest point matching at the heart of the recognition, we 
propose means to extend its use to the recognition of 3D objects obtained 
from range data. Examples demonstrate the feasibility of this approach to 
free-form recognition. 
 
 
 
 
 
1 Introduction 
 
The recognition of free-form 3D objects – i.e. objects of arbitrary shape – is 
one of the major problems in computer vision. The classical segmentation and 
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primitive extraction approach cannot easily be extended to deal with free-form 
objects. As pointed out by other authors [5, 11], it is not clear, how object 
parts should be defined and how reliable segmentation may work. Therefore, 
we opted for a recognition principle based on geometric matching. It works 
directly on the measured 3D coordinates of the object surface. Hence the 
recognition is independent on assumptions of object primitives. 
 
According to this geometric approach, the comparison of the test and model 
object is performed with an iterative closest point matching algorithm (ICP) 
[1]. It guarantees convergence but successful matching is obtained only for a 
limited range of orientation and translation differences between the test and 
model object [10]. The paper discusses means to extend the ICP algorithm to 
the recognition of 3D objects obtained from range data. 
 
Our investigations refer to a recognition configuration used for the pose 
estimation of 3D industrial objects in automatic assembly [6]. The objects are 
described by range data. The range images are acquired with a range finder 
working on the principle of space coding with projected stripe pattern and 
triangulation.  
 
Other researchers [2, 3, 4, 8, 9, 11] have used similar algorithms to track 
objects and register surfaces. In most of these systems the initial 
transformation, from where the iterative algorithm is launched, is entered by 
an operator or estimated, for example when tracking objects. As far as we 
know, the ICP algorithm has not yet been used to perform object recognition. 
 
In a previous paper, we investigated the usefulness of the ICP algorithm to 
recognize of free-form 2D shapes and a simple 3D object [10]. We present 
now further experiments which refer to complex 3D objects. Section 3 
presents rules to build a set of starting configurations for the ICP algorithm 
which helps to overcome its limited convergence and makes even subpart 
matching feasible. In section 4, we propose a measure of matching error best 
suited for the decision process. Successful application to real objects is shown 
in section 5. 
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2 ICP algorithm 
 
The heart of the recognition is the ICP algorithm that compares two surfaces. 
One surface is the test which consists in a specific view of an object and the 
other a model containing the complete information of an object surface. First, 
the algorithm searches for every point of a test set, the point of a model set 
with the smallest Euclidean distance. These pairs of closest points between 
two surfaces to be matched are then used to calculate the translation and 
rotation, which minimize the mean square distance or error. The test object is 
then translated and rotated by the resulting transformation. This procedure is 
applied several times until the error falls below a threshold or the number of 
iteration exceeds a predefined constant. Fig. 1 gives an overview of the basic 
working principle of ICP. 
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Fig. 1. Working principle of the iterative closest point algorithm (ICP) 

 
The simplicity of this algorithm allows a fast implementation. Besides, it does 
not require any data pre-processing or local feature extraction, which makes it 
easily applicable to free-form objects. The algorithm converges after a few 
iterations to a solution which is not necessarily the best one. 
 
 
3 Recognition algorithm 
 
In a 3D object recognition system, the matching algorithm used to compare a 
test with the models in the database should allow the test to be any view of the 
corresponding model placed in any pose. Since the ICP algorithm converges 
only for a limited set of transformations between a test and its model, this 
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algorithm has to be adapted to recognize reliably subparts of 3D objects. We 
propose a set of rules to select appropriate starting configurations, so that the 
ICP algorithm may converge towards the global minimum for at least one of 
them. 
 
First, given a view axis defined by the camera position and the center of mass 
of the test, we place the model behind the test, as shown in Fig. 2. This 
placement ensures that the test surface not visible from the camera always 
faces the model and also excludes that test surfaces are compared with 
invisible model surfaces. 
 
Second, we select N view points distributed uniformly on the sphere, 
circumscribing the model as drawn in Fig. 2. The model is now oriented so 
that every view point is lying once on the view axis. Furthermore, the model 
is rotated in M steps around the view axis for each of these configurations. 
The so defined N•M starting configurations for the ICP algorithm are selected 
in such a way, that their convergence zones cover the whole space around the 
model. This use of different starting configurations will ensure that the 
matching converges at least once towards a successful matching. 
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Fig. 2. Selection of starting configurations for a tape dispenser part 

 
At a first glance the necessity of multiple starting configurations seems to 
introduce much overhead. But since the convergence zone is relatively large, 
the number of starting configurations can be kept low. Furthermore, the 
algorithm converges quickly and allows an estimation of the quality of a 
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starting configuration after few iterations of ICP. This allows to prune the 
search tree. Starting configurations with low error are then used to do more 
iterations in order to find a complete matching. The definition of an adequate 
matching error measure will be presented now. 
 
 
4 Matching error measure 
 
A successful recognition needs a good error measurement which reflects the 
quality of the matching. In our recognition approach, we start the ICP 
algorithm from different configurations doing only few iterations to gain 
speed. Then only best configurations will be selected and used for further 
iterations to obtain final matching. This decision is based on the matching 
quality. Since ICP minimizes the mean square distance between the points of 
two objects, it seems obvious to use the minimized mean square distance as 
matching error measure. But experiments showed that this measure is 
insufficient to discriminate the quality of starting configurations. For example 
the mean square distances for the two cases shown in Fig. 3 differ by only 
20%, which does not reflect  the large difference between the two cases where 
the gray model object is in two completely different configurations. 
 

square distance square distance  
Fig. 3. Histogram of square distance between closest points 

 
The square distance histograms corresponding to the two matches show that 
the distributions of the square distances differ even for similar means of 
square distance. In fact the deviation of the square distances is twice as large 
for the bad case (Fig. 3 left) compared to the good (Fig. 3 right). So, we 



Ch. Schütz et al. 

finally define the matching error measure as the sum of the mean and the 
deviation of the square distances, similar as proposed previously by Zhang 
[11]. A low matching error will indicate cases with a promising match which 
are kept for further iterations. 
 
 
5 Experimental results 
 
As stated in the introduction, our experimental recognition system is used in 
an assembly environment. Our model database consists of the three parts of a 
tape dispenser. A typical scene is shown in Fig. 4, where the background has 
been removed for visualization convenience. Derived from the range image, 
the z-image gives the height above the working table for every image point. It 
is used to separate the objects, assumed not to touch each other. We simply set 
a threshold at the workplace height and obtain a binary image with the object 
zones (see Fig. 5 left). With this method we can extract objects even if the 
background has a complex texture, since texture does not appear in the z-
image any more. 
 
Every extracted test object is matched with all models. We start therefore the 
ICP algorithm for every model applying the rules defined in section 2. We 
select N = 6 view points uniformly distributed on the model sphere and do 
M = 4 rotations of 90 degrees for every view point aligned to the view axis. 
The ICP algorithm is expected to converge for one of these 24 configurations 
since its convergence zone is about 80 degrees [10]. 
 
The best model together with its two best configurations are selected. Several 
new configurations near to the two selected ones are used to start the ICP 
algorithm again calculating more iterations. Finally, we decide for the best 
configuration and do a final matching performing more than 20 iterations. The 
recognized model is then placed in the scene and projected as black dots on 
the intensity image (gray object) to verify the result, as presented in Fig. 5 
right. 
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Fig. 4. Intensity and z-image of a typical robot workspace 

 

  
Fig. 5. Thresholded z-image and recognized models superposed to the 

intensity image 
 
We will now establish a comparison with the classical segmentation and 
primitive extraction approach. Typical for it, is the need to define primitives 
well suited to the objects to be recognized. If these primitives are very specific 
like planes, cylinders, superquadrics, they are not in a position to model free-
form objects sufficiently well. If they are very general, they are usually not 
stable and lead to difficult segmentation. 
 
To illustrate some of the difficulties found with the classical approach using 
general primitives, we present segmentation results for the same scene as in 
Fig. 4. We show in Fig. 6 the result of segmenting the range image into 
general primitives defined by the sole criterion of continuity [7]. Looking at 
the resulting segments, being the connected white regions of the presented 
image, we understand easily that they offer a very bad description of the tape 
parts. A symbolic matching based on such poor primitives will usually fail to 
recognize them. 
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Fig. 6. Range image and its segmentation 

 
Finally, these few examples are sufficient to show the feasibility and 
advantages of a geometric approach for modeling and recognizing free-form 
3D objects. 
 
 
6 Conclusions 
 
The presented work is a contribution to a 3D object recognition approach 
which is easily applicable to free-form objects. The approach is based on 
geometric matching and applies to objects represented by sets of points or 
polygonal models. It differs from the classical approach which requires object 
segmentation and model construction in terms of geometric primitives. 
 
Using the ICP algorithm at the heart of the recognition, we proposed a number 
of methods and techniques to extend its use to the recognition of 3D objects 
obtained from range images. 
 
Since the ICP algorithm is not directly applicable to object recognition 
because of a limited convergence zone, we proposed a set of starting 
configurations using the knowledge of the camera position to overcome this 
handicap and to allow object or subpart matching. 
 
We showed that the integration of the square distance deviation in the quality 
measure helps to extract reliably promising starting configurations for further 
observation. 
 
Presented results show the successful recognition of the three parts of a tape 
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dispenser and demonstrate the feasibility of the approach. Its intrinsic 
flexibility makes the approach applicable to any object form. 
 
In the future, we will address possible limitations of the proposed approach 
which may arise when dealing with large number of models and having 
occlusion in the scene. 
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