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This paper presents a method to localize a mobile robot 
in a topological map. This work enters a navigation method 
developed for mobile robots, which basic idea is to 
represent the robot spatial knowledge by a topological map 
and to use the behavioral approach to control the robot 
moves between fixed positions of the environment known as 
self-positioning sites. A feature of this method is that each 
physically grounded site is represented by a node in the 
topological map, and the localization problem is to find the 
node-site correspondences. In the paper we develop and 
analyze a localization method based on vision that 
compares images taken by a robot-mounted camera with 
references images. Special considerations is given to noise 
rejection by making the method robust against 
environmental changes. The localization method is 
implemented on a Nomad 200 mobile robot. Presented 
localization results illustrate its performance and degree of 
robustness. 

I. INTRODUCTION 

The behavioral approach to design autonomous 
systems like mobile robots is based on the existence of 
individual behaviors and on the strong robot-
environment interactions they provide. It is inspired to 
some extent by the animal world, where a behavior may 
be described as an independent stereotyped action that is 
maintained by a specific stimulus [5]. For example, the 
behaviors perform, continuously and concurrently, 
simple tasks such as: "follow a wall", "go towards", 
"follow a corridor". The success of the behavioral 
approach comes from the strong interaction of the robot 
with the world provided by the set of behaviors. It allows 
the robot to move around surely in a complex and 
dynamic environment. More complex reactive tasks can 
also be achieved easily by combining behaviors, as was 
shown for example by a task that tidies up chairs in a 
room [13]. 

Navigation tasks cannot be achieved only with 
behaviors, a representation of the environment becomes 
necessary. A solution to this problem is provided by 
combining a world representation with a special kind of 
behavior known as a self-positioning behavior. These 
behaviors control the robot by servoing its moves to low-
level primitives, which may be visual primitives such as 
points and segments extracted from image sequences that 
relate to invariant features and structures of the 
environment such as corners, angles, ceiling structures 
[4]. Self-positioning sites are created at discrete locations 
of the environment. 

A proposition for the body of a world representation 
is the cognitive map [2, 7], which may be analyzed in 
two ways. From the topological point of view (or 
reasoning level ), the cognitive map is centered on a 
symbolic representation. From the robot resources point 

of view (or control level ), the cognitive map is grounded 
in the interactions of robot sensors and actuators with the 
environment. 

At the reasoning level, areas where the self-
positioning behaviors are stimulated are symbolized by 
nodes, while all reactive behaviors, that move the robot 
between sites (i.e. follow-wall behavior, go-towards 
behavior, follow-way behavior), are represented by 
edges. Nodes and edges form a network that describe the 
spatial knowledge of the robot about its environment. 
This topological map can be used to plan robot actions 
and distinguish ambiguous sites. It can also be learnt by 
exploration of the environment. 

Given physically grounded self-positioning sites and 
a topological map with nodes, the localization problem 
consists in finding the valid site-node correspondences. 
The problem occurs each time the robot is lost or its 
estimated position error is too large. 

Generally, localization and positioning occur when 
a robot navigates in a mapped environment. Localization 
consists in finding a environment-map correspondence 
while positioning consists in adjusting the position and 
orientation of the robot with respect to the map. 
Positioning is used in geometrical maps, and is generally 
performed with extended Kalman filtering [3] or with 
correlation techniques [11]. Localization is related to 
topological maps. Mataric uses a sonar and a compass to 
represents landmarks (doors, wall, etc.) and localizes the 
robot while it is moving by recognizing a sequence of 
landmarks [9]. Kurz represents nodes by similar sonar 
scans, and localizes the robot by finding the node whose 
sonar scan is closer to the current scan [8]. Kortenkamp 
defines gateways with a sonar sensor signature and uses 
a visual information (vertical edges) to identify 
gateways. This localization is done without moving the 
robot [6]. For hybrid maps combining geometrical and 
topological representation, Basri proposes a method for 
both localization and positioning [1]. Localization is 
performed first by matching 2D images, and the 
positioning is done by finding a geometrical 
transformation between the current image and reference 
images. 

The work presented here differs from previous work 
by the fact that instead of a positioning, a self-
positioning is performed. It adjust the position and 
orientation of the robot with respect to the environment 
in a quite accurate way. The localization method can 
take advantage of this. 

The localization method we develop and analyze in 
this paper is based on vision. It compares images taken 
by a camera mounted on top of the robot with references 
images. Each node is characterized by a reference image 
and an unknown site is localized by comparing with the 
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set of reference images the image taken while the robot 
is self-positioned. Special considerations is given to 
noise rejection by making the method robust against 
environmental changes. 

In the following sections, we first describe the robot 
architectural principles, the experimental development 
environment MANO and give a short description of the 
Nomad 200 mobile robot hardware. A self-positioning 
behavior named "homing on corner" is explained in 
section V. Section VI presents the principles of the 
localization which implementation and test is discussed 
in section VII. Section VIII concludes this paper. 

II. ARCHITECTURE 

The robot architecture follows the principles of the 
behavioral approach. It is composed of three layers : 
sensor-motor, behavioral, and sequencing (Fig. 1). The 
layers operate synchronously with respect to each other. 
The lowest one, called sensori-motor layer, is based on 
control theory and on signal processing. It is responsible 
for the elementary movements of the robot and processes 
data acquired by the sensors. The second is the 
behavioral layer. It is composed of a set of behaviors that 
on one hand control the robot with respect to 
environmental characteristics , and on the other hand 
extract measures of the world in order to feed the robot 
internal world representation: the topological map. On 
top, the sequencing layer implements tasks which are 
described as sequences of behaviors. Its heart is 
animated by a state automaton which receives as its input 
the status of the behaviors and information from the 
map, and which activates elementary behaviors.  
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Figure 1: Development environment MANO. 

 III. DEVELOPMENT ENVIRONMENT MANO 

MANO is an experimental mobile robot 
development environment [5, 13] (Fig. 1). It implements 
above described architecture. The core of this 
environment is a virtual robot unit and of a blackboard 
which handles the communication between the different 
layers. The three layers of the architecture are connected 
to these central elements. The sensori-motor layer is 
implemented on dedicated hardware located in the robot 
itself and on additional external units. The two other 
layers together with the blackboard and the virtual unit 
are distributed over a network of SUN workstations. 

The virtual robot unit links to the blackboard. It 
offers an interface with equivalent access to either the 
real or the simulated robot. The transition from real robot 
to simulated robot is possible at any time by a simple 
switch. In addition to the simulator, the virtual robot 
interface provides extended capabilities to monitor the 
robot, sensor data, commands, position etc.  

The blackboard is the communication channel 
between the virtual robot, the behavioral layer and the 
sequencing layer. It acts as a server, using a TCP/IP 
connection protocol. Clients can connect from any point 
of the network. 

IV. ROBOT HARDWARE 

The robot Nomad 200 — from Nomadic 
Technologies [12] — is a one-meter-tall cylindrical robot 
moved by a three wheel synchronous drive motion 
system; its upper body - the turret - can be rotated 
independently around its vertical axis. The three-
dimensional robot control space is described by 
(v,ω,ϖ)T, where v is the translational velocity in the 
heading direction, ω the angular velocity of the robot 
frame and ϖ the angular velocity of the turret. At 
constant velocities, the robot moves on a circle which 
radius is equal to v/ω. 

The Nomad200 provides sensors of different types: 
16 sonars, 16 infrared range-sensors and 20 tactile 
sensors, and the Sensus500 sensor. Of special interest 
here is the latter which is a structured vision system that 
determines range by triangulation. It combines a laser 
diode used as a light source which produces a horizontal 
'plane of light' with a CCD camera for image generation. 
Any object in front of the robot which intersects the 
plane of light, forms a light stripe on the camera image, 
which position determines its range. This device is 
central to the self-positioning used. 

Among several other sensors mounted on the robot, 
the localization uses a gray scale camera linked to a 
Matrox image processing system. 

The communication between the mobile robot and 
the fixed computers is established via a serial radio link.  

The sensori-motor layer is implemented on a number 
of PC-boards: the servo loops controlling the robot are 
on board while some vision processing is currently 
performed remotely 

V. SELF-POSITIONING BEHAVIOR: HOMING ON 
CORNERS 

The localization uses a self-positioning behavior 
called homing on corners that servoes the robot to a 
fixed position defined with respect to a geometrical 
configuration of the environment: a corner. The self-
positioning site - or homing site- is defined by a position 
on the bisectrice of the corner, at a fixed distance from it. 
The behavior receives range profiles from the Sensus500 
and controls the robot moves to the homing site (Fig. 2) 
shows the robot performing a homing on a corner. The 
trace of the Sensus500 laser is visible on the walls. 
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Figure 2: Self-positioning the robot by homing on a 

corner 

Range data from the Sensus500 sensor are first 
segmented into straight segments which are submitted to 
a grouping process that labels joining segments as 
corners. In presence of a corner, the behaviour is said 
stimulated, and the control begins. The figure 3 indicates 
the circular path of the robot reaching the homing site. 
Radius R of the circular path and homing site position 
are determined. The translation velocity v is chosen to 
decrease with the remaining path length. Since R and v 
are known, the angular velocity of the robot frame is 
obtained by ω=v/R. 
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Figure 3: a) Robot path during the self-positioning 
behaviour b) Positioning error 

In addition to moving the robot, the problem is also 
to control the turret angular velocity so that it always 
looks at the corner (and keeps the corner in the active 
range of the sensor). As shown in figure 3, at time T the 
turret is not aligned on the corner. An angular correction 
of β must be done. Furthermore the robot moves affect 
the view angle that must be corrected by an angle α. In 
all the robot position is evaluated at periodic time 
intervals ∆T, α and β are computed and the turret 
angular velocity is obtained by: 

ϖ=k Error! 
As soon as the robot reaches the homing site, the 

behavior is said satisfied. 
Unless other positioning methods, this self-

positioning behavior "homing on corners" is 
characterized by a good accuracy. Experiments 

performed with Nomadic 200 result in mean positioning 
errors in position and angle as defined in figure 2 of 

σ = (2.4 cm, 2.2 cm)T  
σϕ = 1.3 ° 

VI. LOCALIZATION 

The proposed localization method compares images 
taken by a camera mounted on top of the robot with 
reference images. Each node is characterized by a 
reference image and an unknown site is localized by 
comparing the image, taken while the robot is self-
positioned, with the set of reference images. The 
richness of the information of a gray scale image allows, 
in most of the cases, to characterize a self-positioning 
site in a unique way. 

The localization is composed of a learning phase and 
a recognition phase. The learning consists in 
characterizing each node i by a model mi, composed of a 
node identifier hi and a reference image ri. 

During recognition, image I taken from an unknown 
site, is compared with the set of images ri. The result of 

the localisation is the identifier h* of the node whose 
comparison with I produces the highest score. 

 From the measures of similarity c(I,ri) issues from 
the comparisons, score si are defined as follows: 

si = { c(I,ri) if c(I,ri) > T, NIL otherwise   
The score is high when the image I is close to a 

reference image and low otherwise. In addition, in order 
to reject images with similarities below a minimum value 
the respective scores are set to NIL. 

In practice T is chosen equal to 60%. 
The highest score wins, and there is a possible 

rejection in case all scores are NIL: 
h* = 

Error! 
As a measure of similarity between two images, the 

correlation coefficient is used. It is preferred to the 
classical correlation because of its invariance to changes 
in offset and scale of the intensity image. It is thus more 
robust to changes of the lightning conditions. 

Two localisation methods, differing by the way they 
compute the scores, are considered. The first one (named 
F) compares entire image from test and model whereas 
the second one (named F) compares multiple subimages 
of them. 

The accuracy of the self-positioning behavior is an 
interesting property for the localization because images 
taken from a same site will be very close. Image shifts of 
the recorder image are very limited, a property which 
implies that image shifts in horizontal and vertical 
directions Dx x Dy in the computation of correlation can 
be kept low. 
A) COMPARING  FULL MAGES (F) 

The model mi is composed of a node identifier hi, 
and a reference image which size is NxM. The 
correlation coefficient is simply computed for each 
reference image ri. 

c(I,ri) = ρI.rj  
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B) COMPARING SUB-IMAGES (S) 
With this second localization method, several sub-

images are selected in the full reference image. For each 
reference, the comparison is done between the set of sub-
images and the corresponding parts of the unknown 
image. 

In this case the model mi is composed of a node 
identifier hi, ni sub-images tij, called templates, as well 
as their positions (xij, yij) in the reference image. The 
templates, that size is KxK, are chosen manually. 

The correlation between an image I an a template tij 
gives: 

ρI.tj i= c(I,tij) 
The correlation delivers for each template a 

correlation coefficient ρI,tij and the position ( x,˜ ij and 
y,˜ ij ) of the best matching. Again, a score is defined for 
the comparison of template j of image i with the 
corresponding sub-image of I by 

sij= 
Error! 

which, as above, sets the score equal to similarity 
when it is high. Also, in order to reject images with 
similarities below a minimum value T, the respective 
scores are set to NIL. There is now as an additional 
rejection based on the position of the correlation peak. It 
must be very close to the learned template position, 
otherwise, the score is NIL. 

From the individual scores sij, the global score is 
now computed as the mean of n,˜ i non-NIL scores from 
sij, j=1..ni. Formally 

si= Error! 
ROBUSTNESS TO CHANGES 

In the second localization method, several templates 
are selected as templates, instead of the full image. It is 
expected to offer a better tolerance to environment 
modifications because only the correlation coefficients 
of the sub-images concerned by the modification will be 
affected, while they will be unchanged in other. 
COSTS OF LOCALIZATION METHODS 

Decreasing the size of the templates will increase the 
processing speed. Let us consider the computational cost 
of the correlation operation. In the following, the 
distance thresholds Dx and Dy are supposed equal and 
are named D. The cost of method F which correlates two 
full images of size NxM, is.  

Cost(F)≈ NMD2 
The proposed method for localization is yet 

implemented with a correlation  operation moving the 
template over all the image I. The recognition cost for 
one reference image composed of n templates which size 
is K2 becomes: 

Cost(S)≈ nMNK2 
The size of D is about the same as K, so as soon as n 

increases, this method is worse than method F. Another 
possibility is to correlate the template just around its 
nominal position. This will suppress the distant 
templates threshold filtering. The cost is reduced to: 
Cost(S')≈ nK2D2 

The gain with respect to the first method (S) is about 
MN/nK2, the ratio of the full image surface by the n 
templates surface. It . This gain of this method with 
respect to the implemented method is NM/D2. 

VII. EXPERIMENTAL RESULTS 

The experiments with a real robot compare the 
robustness and the performance of the two localization 
methods described above. In particular we focus on 
robustness when the lightning environment is changed 
and when several self-positioning behaviors are 
repeated. 

The experimental environment is a rectangular 10 by 
6 meter long room where four corners reported in the 
figure 4 are used as self-positioning sites. A gray scale 
video camera, equipped with a fish-eye lens is mounted 
horizontally on the top of the robot. In order to avoid the 
perturbation resulting from human activities, the camera 
is placed as high as possible. It is placed 2 meter high 
and points to a direction opposite to the homing corner. 
The images are processed by a system based on the 
Matrox Image SeriesTM IM-640 (real-time processor 
RTP) [10]. The size of the image is 320x240 pixels by 8 
bits, and the templates size is 64x64 pixels by 8 bits. 

1 2

3

4

10 m

6 
m

cur tains

neon tubes

Figure 4: Experimental environment with self-
positioning sites 

We test the robustness of the localization by 
modifying the lightning of the room. Five configuration 
are tested, the first being the test configuration used for 
learning. The 4 latter are configurations with 
successively increasing degradations of the original 
lightning conditions: 

C1: all neon tubes ON and curtains closed  
C2: all neon tubes ON and curtains opened 
C3: only eastern neon tubes ON and curtains closed  
C4: only western neon tubes ON and curtains closed  
C5: all tubes OFF and curtains opened 

LEARNING 
The room is configured as C1, and the robot is 

homed once at the four self-positioning sites. Figure 5 
shows the reference image corresponding to each site, 
the rectangles indicate the ni=3 templates selected for 
method S. These templates are chosen manually in the 
upper part of the image where there is few modifications. 
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The templates are essentially taken on neon tubes 
because of the better contrast. 

site 1:  

site 2:  

site 3:  

site 4:  
 Figure 5: Images taken from each of the four self-

positioning sites and the templates chosen as learning set 

RECOGNITION 
During the recognition test, the self-positioning 

behavior is repeated four times per site, and for every 
home the lightning is modified according to the five 
configurations. Methods F and S are tested. Method F 
comparing full images is noted F in table I. Method S is 
noted accordingly. For both method, the distance 
threshold D=Dx=Dy between the learned and the best 
matching template is set to 32 pixels. The table I shows 
the results of the identification. The evaluation 
encompasses the test of five lightning configurations. 

 
  h1* h2* h3* h4* h0 
  S  F  S F S F S F S F 
C1 h1 4  1       - - 
 h2   4 1     - - 
 h3     4  1    - - 
 h4       4 1 - - 
C2 h1 4 1       - - 

 h2   4 1     - - 
 h3     4 1   - - 
 h4       4 1 - - 
C3 h1 4 -       - 1 
 h2   4 1     - - 
 h3     4 -   - 1 
 h4       4 1 - - 
C4 h1 4 1       - - 
 h2   - -     4 1 
 h3     4 1   - - 
 h4       - - 4 1 
C5 h1 -  -       4 1 
 h2   4 1     - - 
 h3     - -   4 1 
 h4       - - 4 1 

TABLE I : Recognized and rejected sites for the 4 tests 
and five configurations 
 

The localization is very robust when the self-
positioning behaviors is performed several times. 

The performance of the localization decreases 
clearly when the lightening degradation increases. The 
localization is perfect for C1 which is the learning 
configuration. For C2 that enhances the illumination, 
results are also perfect. C3 gives good results for (S) but 
(F) rejects two sites. For C4 and C5, at a level of high 
degradation, the recognition has several rejections and 
(S) and (F) performances are similar. 

The figure 6 shows the results of the correlation 
between the homing site 1 and all templates, with all 
configurations. The information found on the images is: 
rectangles show the best matching template position; 
numbers indicate successively the model number, the 
template number and the correlation coefficient. We 
observe that despite important lightning modifications in 
the images, the site is well identified in 4 cases. When all 
the neon are OFF (fig 6 C5), it is no wonder that an 
image, which templates are taken on the neon (fig 5 
home 1), is not recognised. 

Let us remark that the informations on figure 6 are 
displayed before removing distant templates. The model 
m21 appearing in images C1 and C3, with a coefficient 
of 62%, will be set to NIL by the distance filter because 
of |x,˜ 21-x21|=(195,5) for C1 and (196,5) for C3. 

C 1:

1 1 83%
1 3 89%

1 2 98%
2 1 62%
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C 2:

1 3 79%
1 2 92%

 

C 3:

1 2 96%
2 1 62%

 

C 4:

1 1 84%
1 3 84%

 

C 5:  
Figure 6: Results for site 1 

The method using templates (S) is more robust than 
the method comparing full images (F).  

Computational costs of current implementation refer 
to case 2 of section VI. Identification time for one site 
among four using three templates per site is 2.8 seconds. 
It is composed of a constant time of 0.4 second and of a 
correlation time per template of t=0.2 second. This 
values is acceptable in that case, but for a real map 
composed of a large number of sites it is too long. For 
example, the localisation using 20 sites with 3 templates 
per site needs 16 seconds. The proposed improvement 
refers to case 3 should decrease the computational costs 
by a factor NM/D2≈75. So the localisation becomes 
efficient and better than method F. 

VIII. CONCLUSIONS 

We proposed and developed a method to localize a 
mobile robot in its topological map. It finds a node-site 
correspondence between a physically grounded self-
positioning site and the nodes of the topological map. 
The localization method is based on the comparison of 

images taken while the robot is self-positioned on its site 
and is adapted to be insensitive to changes of the 
environment. The localization uses the correlation 
coefficient for measuring similarity between gray scale 
images. We propose two localization methods, the first 
one comparing full images, the second one comparing 
multiple sub-images - or templates - extracted from the 
reference image.  
We implemented both localization method and a self-
positioning "homing on corner" behavior in the 
development environment MANO, that encompasses a 
mobile robot Nomad200 moving in an room 
environment, a set of different sensors, dedicated vision 
hardware, a collection of sensory-based behaviors as 
well as a versatile control unit. The self-positioning 
"homing on corner" behavior was performed on a real 
robot, showing its good accuracy. The localization 
method comparing templates shows better robustness 
and performances than the method comparing full 
images. This localization method gives excellent results 
for reasonable lightning changes of the environment. 
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