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ABSTRACT 
 
 This paper investigates the recognition performance of a geometric matching approach to the recognition of free-form 
objects obtained from range images. The heart of this approach is a closest point matching algorithm which, starting from an 
initial configuration of two rigid objects, iteratively finds their best correspondence. While the effective performance of this 
algorithm is known to depend largely on the chosen set of initial configurations, this paper investigates the quantitative nature 
of this dependence. In essence, we experimentally measure the range of successful configurations for a set of test objects and 
derive quantitative rules for the recognition strategy. These results show the conditions under which the closest point 
matching algorithm can be successfully applied to free-form 3D object recognition and help to design a reliable and cost-
effective recognition system. 
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1. INTRODUCTION 
 
 The recognition of free-form 3D objects is still a major problem in computer vision. Although successful recognition has 
been obtained with simple objects, it is difficult to extend the traditional segmentation and primitive extraction approach to 
deal with free-form objects. It is not clear, how object parts should be defined and how reliable segmentation may work, as 
pointed out by other authors 8, 13. Therefore, a recognition principle based on geometric matching is used as presented in 12, 13. 
This approach works directly on the 3D coordinates of the object surfaces as obtained from range data. Hence, the recognition 
is independent on assumptions related to object features. Furthermore, since a range finder senses the 3D object information, 
perspective and scaling effects are not present. 
 
 According to this geometric approach to object recognition, the comparison of the test and model object is performed with 
an iterative closest point matching algorithm (ICP) 2. In this present work the test surface is represented by a range image 
whereas the model surfaces may be represented by sets of 3D points, polygons or other geometric primitives. For this reason, 
even CAD models can be easily used as models. 
 
 Although the ICP algorithm is proven to converge 2 the found solution is often only a local minimum. Convergence to the 
global minimum is not guaranteed generally. It is known to depend on a well chosen initial configuration of test and model 10. 
 
 In previous works using geometric matching methods, initial configurations are derived from contextual knowledge about 
the range finder setup 3, 4, 13 or found automatically by extracting some features as curvature or edges 1, 5, 6, 7. In absence of a 
priori knowledge or robust features, the ICP algorithm is started with multiple different initial configurations 9, 12. In any case, 
the recognition performance depends on the choice of the initial configurations and it is the first objective of this paper to 
investigate the quantitative nature of this dependence. 
 
 To do so, we propose a methodology for measuring and representing the recognition performance as a function of the 
initial configurations and apply it to the recognition of free-form 3D objects from range imaging, applying the setup discussed 
in 12. In essence, the notion of successful initial configuration (SIC) is introduced, then the SIC-range of example objects is 
measured experimentally and displayed in the form of an original SIC-map. We present SIC-maps obtained from a series of 
experiments performed on injected plastic free-form objects. 
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 The second objective aims at using the information from the SIC-maps in order to select a set of required initial 
configurations (RIC) to design a reliable and cost effective recognition system. Recognition experiments on a database of 
several object scenes assess the performance of the chosen RIC. 
 
 Section 2 introduces the ICP algorithm and its application to free-form object recognition. The SIC-range is investigated 
experimentally in section 3 for three toy objects. Section 4 develops the RIC estimation using the obtained SIC-maps. Finally 
in section 5, a recognition experiment using a database with different scenes representing toy objects gives recognition 
performances for several RIC setups. 
 

2. OBJECT RECOGNITION WITH GEOMETRIC MATCHING 
 
 The geometric matching of two object surfaces is performed with the iterative closest point (ICP) algorithm 2. Fig. 1 gives 
an overview of the basic principle of ICP. One surface is the test which consists in a specific view of the object; the other is a 
model containing the complete information of the object surface. The algorithm proceeds iteratively. First, it pairs every point 
of a test set with the closest point of a model set. These pairs of closest points between two surfaces to be matched are then 
used to calculate the translation and rotation, which minimize the mean square distance or error. The test object is then 
translated and rotated by the resulting transformation. This procedure is repeated until a predefined error falls below a 
threshold τ or the number of iterations exceeds a chosen constant N. 
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Fig. 1. Matching two objects with the iterative closest point algorithm (ICP) 

 
 The algorithm uses directly the sensed range data points and does not require any data pre-processing or local feature 
extraction, which makes it easily applicable to free-form objects and several types of object representations. Note that in our 
application the test represents a single view of the object and is obtained from a single range image while the model 
represents the complete object and is obtained by the registration of several range images representing different object views. 
 
 The algorithm converges after few iterations to a solution which is characterized by its error value. Successful matching 
occurs if the matching error, which is calculated as the sum of the mean and the deviation of the square coupling distances, is 
below a predefined threshold 11. Otherwise, the algorithm is trapped in a local minimum. 
 
 Considering the space of possible initial configurations, successful matching is obtained only from a limited range of it, 
named successful initial configuration range or SIC-range. To practically measure the SIC-range, we first reduce the 
dimension of the 6D space of initial configurations to the 3D space proposed in 12 and corresponding to the setup in Fig. 2. 
The test object is placed on the view axis defined by the camera pointing towards the model object at a fixed distance between 
model and camera. The space of initial configurations can then be defined by the triple (φ, θ, ω) where φ and θ are 
respectively zenith and azimuth angles of the view axis in the model spherical reference system and ω designates the camera 
rotation angle around this axis. From now on, we name the pair (φ, θ) view point. 
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Fig. 2. Initial configuration setup of test and model 

 
3. ASSESSMENT OF SUCCESSFUL INITIAL CONFIGURATIONS 

 
 We thus measure the SIC-range in the (φ, θ, ω) space. In order to do so, the (φ, θ, ω) parameter space of all possible initial 
configurations has to be inspected for successful matching. Successful configurations form the SIC-range. We estimate the 
SIC-range using the three free-form objects shown in Fig. 3. They represent injected plastic toys and are called duck, fish and 
swan. 
 

   
Fig. 3. Free-form objects: duck, fish and swan 

 
 For each toy one view is selected and its SIC-range elaborated as follows. First, the test is directly placed at its pole initial 
configuration (see Fig. 4), which is its original orientation and a translation according to the setup presented in Fig. 2. 
 

   
Fig. 4. Pole initial configuration of the three toy objects showing the model in gray and the test in black 

 
 Starting from this pole configuration, the complete (φ, θ, ω) parameter space is traversed in steps of 10 degrees varying 
azimuth angle θ from 0 to 360, zenith angle φ from 0 to 180 and view axis rotation angle ω from 0 to 360 degrees. This 
procedure orientates the test at different view points and then rotates it around the view axis. More formally, the 
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transformation, which orientates the test on the view point, rotates the test object by zenith angle φ around the rotation axis 
which is perpendicular to the great circle of azimuth angle θ as illustrated in Fig. 5. Then, follows the rotation ω around the 
view axis. 
 

zenith angle φ

great circle of azimuth angle θ

ω

view axis

 
Fig. 5. Test transformation from pole to view point 

 
 For every initial configuration the ICP matching algorithm is launched, running enough (40) iterations to ensure 
convergence. An initial configuration is labeled as successful if the final matching error falls below a fixed threshold. An 
appropriate threshold is simply derived from the matching behavior of a number of cases. 
 
 The matching results are presented for every view point as a small circle where the black segment represents the SIC-
range for ω (Fig. 6). The view points on the sphere are projected on a plane tangential to the pole for visualization in 2D 
giving rise to the SIC-map as defined in Fig. 6. View points having the same zenith angle lie on a circle around the pole. Note 
that view points from the lower hemisphere are omitted since there is no successful matching at all. 
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Fig. 6. The SIC-map illustrates the SIC-range in the (φ, θ, ω) space 
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 Fig. 7 shows the SIC-maps of the three toy objects obtained experimentally according to the above explained method. 
 
 duck fish swan 

    
Fig. 7. SIC-map for three free-form objects (scale as in Fig. 6) 

 
 We observe that the SIC-range for ω decreases for view points with growing zenith angle. While this decrease is azimuth 
dependent for the fish it is nearly azimuth independent  for the duck and swan. 
 
 In any case, it is interesting to analyze how the size of the SIC-range varies with increasing zenith angle. Let us define 
mean size Δω  and minimum size Δω0 , the size of the black section of the SIC range for ω. We observe the decreasing 
functions reported in Fig. 8. A Δω0  of 150 falls to 0 at a zenith angle φ0  of 60 for duck and swan. For the fish, a Δω0  of 200 
falls to 0 at a zenith angle φ0  of 40. 
 
Considering these functions and defining now the simple rectangular range 
 

R(φ0 , Δω0 ) = [0…φ0 , 0…Δω0 ],    φ0 , Δω0  ≥ 0 
 
an approximate and conservative modeling of above objects could be for example: 
 SIC-range of duck and swan R(40, 90) 
 SIC-range of fish R(30, 120) 
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Fig. 8. Zenithal variation of the size of SIC-range for ω 

 
 In the next section we will use this object SIC-range modeling for the design of a reliable recognition system. 
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4. ASSESSMENT OF REQUIRED INITIAL CONFIGURATIONS 
 
 During recognition when no a priori knowledge is available, the matching algorithm is started with multiple different 
initial configurations. A simple choice of these required initial configurations (RIC) considers Nv  view points distributed 
evenly on the observation sphere and Nr  possible view axis rotations, giving rise to a number of Nv •Nr  RIC 12. The choice 
of Nv  and Nr  is discussed in this section. It is constrained by two factors. On one hand, the computational cost of 
recognition 9 is proportional to Nv •Nr , calling for small values of Nv  and Nr . 
 
 On the other hand, Nv  and Nr  must be sufficiently large to ensure reliable recognition. It means that at least one of the 
multiple initial configurations must belong to the SIC-range of the test. Considering an object with an hypothetical uniform 
SIC-range given by R(φ0 , Δω0 ), above condition is satisfied if the covering of the space with the set of RIC is dense enough 
to fulfill the conditions of a maximum spacing in rotation angle 
 

360
Nr

< Δω 0  

 
and a maximum spacing in zenith angle 
 

φ* Nv( )< φ0  
 
 Function φ* N( )  is a basic function that relates the number of evenly distributed points on a sphere with their maximum 
spacing. More formally, it expresses the maximum angle distance of any point on the sphere to the set of N points distributed 
on it. Some values of φ* N( ) , computed from a distribution obtained by a point repulsion algorithm, are reported in Fig. 9. 
 

 
Fig. 9. Maximum angular distance φ* N( )  to N points evenly distributed on a sphere 

 
 Applying now above condition to the object models of previous section, we obtain example choices of Nv  and Nr  as 
follows: 
 duck and swan R(40, 90) Nv  = 10, Nr  = 4 
 fish R(30, 120) Nv  = 12, Nr  = 3 
 
 In a further step, we now vary the parameter Δω0  and φ0  of the SIC-modeling and minimize computational costs. On one 
hand, with above two conditions, the cost expresses as function of Δω0  and φ0  as 
 

C φ0, Δω 0( )≥ const ⋅
1

Δω0
⋅ φ*−1

φ0( ) 

 
 On the other hand, Δω0  and φ0  are bound by the object specific functions Δω0 φ0( ) of Fig. 8. Under this constraint, 
optimizing the costs leads to an optimal solution φ0 , Δω 0( )opt . Fig. 10 represents the cost function C φ0, Δω 0( ) together with 

the subset of values (black line) corresponding to the Δω0 φ0( ) dependence for the duck object. The optimum cost is obtained 
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for φ0 , Δω 0( )opt  = (50, 60) corresponding to Nv  = 8, Nr  = 6.  

 

 
Fig. 10. Computational cost for R(φ0 , Δω0 ) SIC-modeling 

 
 The φ0 , Δω 0( )opt  results for all objects are combined by selecting the smallest value of φ0  which is 35 for the fish. 

Knowing φ0 , again the smallest of the Δω0 φ0( ) angles is chosen which equals to 90. Now all SIC-models are satisfied and 
we obtain a common set of φ0 , Δω 0( )opt  = (12, 4). 

 
 These numbers are only estimates since the SIC-range elaboration has been performed only with one view per object. The 
next section presents recognition experiments on a scene database in order to verify the performances of the designed setup. 
 

5. RECOGNITION PERFORMANCE FOR DIFFERENT SETUPS 
 
 To verify the validity of the selection of a set of RIC characterized by numbers Nv  and Nr  according to the previous 
section, a series of recognition experiments is performed. It involves the three object models known as duck, fish and swan 
and ninety tests from scenes acquired with a range finder, each containing one of the toys in a arbitrary pose. 
 
 The recognition experiment is used to evaluate the recognition performance as a function of sets of RIC characterized by 
different numbers of view points Nv  and view axis rotation steps Nr . A specific set is runned three times and the mean of the 
recognition results is calculated since the view point distribution is initialized randomly. 
 
 The decision of correct recognition is made by selecting a matching error threshold τ of 40 mm2. This is an appropriate 
level to identify good correspondence since the number of sensed points is reduced by grouping local neighbors 12 and the 
resulting mean square distance is about 36 mm2. 
 
 Under these conditions, there are no false classifications (confusions) at all. The result is thus either correct recognition or 
rejection. In the following, we report the percentage of correct recognition. 
 
 Fig. 11 compares RIC setups characterized by Nv /Nr  values. Solid bars represent the recognition rate while the gray 
curve reports computational cost. 
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Fig. 11. Recognition performance for different RIC setups 

 
 Maximal recognition rate of about 97% is reached for a set of RIC Nv /Nr  = 12/8. Almost the same recognition rate is 
obtained with less cost for Nv /Nr  = 12/4. 
 
 By looking at the setups Nv /Nr  = 8/8 and Nv /Nr  = 12/4, we also observe that a higher number of view points needs a 
lower number of rotations to obtain similar performance. 
 
 The experimental results thus confirm the design rules of the previous section. 
 

6. CONCLUSIONS 
 
 In this paper, we investigated the quantitative nature of the dependence of recognition performance with initial 
configurations used in the ICP matching algorithm. We introduced the notion of SIC-range and proposed a suitable 
representation named SIC-map to describe this dependencies. SIC-maps of three objects were presented and analyzed. 
 
 In a second part, we used the knowledge of object SIC-rnaps to design a recognition system with an optimal number of 
view points Nv  and view axis rotations Nr  for the recognition configuration (RIC). 
 
 By recognition experiments on a scene database, we measured computational costs and recognition performances which 
confirm the validity of the design rules. 
 
 Globally, the presented results confirm the successful application of range images and geometric matching to free-form 
3D object recognition. The applied setup allows a recognition of objects lying in arbitrary pose. 
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