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Abstract: The behavioral approach to robot navigation, characterized by a representation of the 
environment that is topological and robot-environmental interactions that are reactive, is 
preferable to the pure geometrical navigation because it is far more robust to unpredictable 
changes of the environment. Nevertheless, there is still a need to obtain geometrical maps. This 
paper considers a geometrical map reconstruction that relies on the topological knowledge and 
uses redundant odometric measurements taken while the robot moves along the paths of the 
topological map. Five methods are presented and compared in experiments involving a 
Nomad200 mobile robot operating in a real environment. 
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1. INTRODUCTION 
 

A map of the environment is needed for a mobile 
robot to carry out navigation tasks. Various map 
representations and numerous map construction 
approaches have been considered. First there are 
geometrical maps, which integrate sensed data in a 
single frame of reference. In the Certainty Grid 
approach (Elfes, 1989), the certainty about the 
existence of obstacles, detected by sonar, is reported 
in a grid map. In an other approach, Crowley (1989) 
constructs geometric feature maps of line segments 
by means of an extended Kalman filter. Therefore 
these geometrical maps give an accurate description 
of the environment and can be used to compute 
optimal robot paths. However they provide a poor 
interface to symbolic planning units, use large 
amount of data, and require a complex process in 
order to maintain the map consistency in large 
environments. 
 
Topological maps overcome some of these 
limitations. They represent the environment as 
neighborhood relationships of distinctive places. 
Places differ by their sensing signatures like sonar 
signatures (Kurz, 1993) or sonar and vision 
signatures (Kortenkamp and Weymouth, 1944). In 
another approach Thrun and Bücken (1996) use 
Voronoi squeletisation to extract identical 
topological regions from a grid map and then create a 
topological map. 
 
All approaches described so far enter the class of 
"sense-map-plan-act" robot architectures, that is 
known to be inefficient to react quickly to 
unpredictable changes of a dynamic world. On the 
contrary the class of behavioral architectures allows 
the robot to move around safely, even in dynamic 
environments, by means of a set of individual 
behaviors that provide strong robot/environment 
interactions. Topological maps are suited to represent 
these interactions (Mataric, 1990). Such a topological 
map known as cognitive map has been proposed by 
Kuipers and Byun (1991). In this approach, 
distinctive places correspond to the activation of a 
particular class of behaviors, called self-positioning 
behaviors. These behaviors control the robot 
movements and lock it into a specific pose relative to 
particular environmental characteristics: the self-
positioning site. Also neighborhood relations are 
expressed by behaviors which servo the robot 
between two self-positioning sites. 
 
Although the behavioral navigation resists generally 
well to changes of the environment, the associated 
topological map is completely useless in the case of a 
loss of behavioral stimulation. These limitations can 
be avoided by extending the topological map with 
additional geometrical information. As a benefit, 
such a new map allows to determine paths that 
haven't been explored. It also provides an interface 
which is better understandable by a human operator. 
 

This paper presents a way to extend the knowledge 
of a topological map of self-positioning sites by 
construction of a consistent associated geometrical 
map. This construction proceeds by integrating 
recorded odometric paths. Five methods are proposed 
to integrate these paths into a single frame of 
reference according to the topological map.  
 
The paper is organized as follows: After a description 
of the mobile robot architecture in section 2, it 
describes in section 3 the behaviors that are used in 
connection with the topological map. Then, section 4 
describes formally the topological map, and section 5 
describes how the geometrical information is added 
to the map. Section 6 presents the five methods used 
to construct the consistent geometrical map. The 
experimental results are shown in section 7, and 
section 8 concludes this paper. 
 
 

2. MOBILE ROBOT ARCHITECTURE 
 
The robot architecture (Hügli et al., 1994) follows 
the principles of the behavioral approach. It is 
composed of four hierarchical layers: sensorimotor, 
behavioral, sequencing, and planing. The lowest one, 
called sensorimotor layer, is based on control theory 
and on signal processing. It is responsible for the 
elementary movements of the robot and processes 
data acquired by the sensors. The second is the 
behavioral layer, composed of a set of behaviors that 
on one hand control the robot with respect to 
environmental characteristics, and on the other hand 
extract measures of the world in order to feed the 
robot internal world representation: the topological 
map. The sequencing layer implements tasks which 
are described as sequences of behaviors. Its kernel is 
formed of a state automaton which activates 
elementary behaviors, based on the interpretation of 
both the status of the various behaviors and the 
parameters transmitted by the planing layer. This 
latter activates and parametrizes sequencing tasks 
according to specifications given by a human 
operator, the information of the topological map and 
the feedback of sequencing tasks. 
 
The architecture is implemented in the form of a 
development environment MANO, that encompasses 
a mobile robot Nomad200 (Nomadics, 1992) moving 
in a room environment, a set of different sensors, 
dedicated vision hardware, a collection of sensory-
based behaviors as well as a versatile control unit. 
The successful implementation of several tasks in 
real environment speaks for the validity of this 
architecture (Tièche et al., 1995) 
 
 
 

3. BEHAVIORS 
 
The behavioral layer comprises various behaviors. 
Some of them are directly related to the self-



 

 

positioning sites and others to the displacements 
between sites. 
 
Two kind of behaviors are related to the sites: the 
self-positioning behaviors which move the robot into 
sites and the localization behavior which identifies 
the sites. Among the self-positioning behaviors, the 
homing on corner behavior, (Facchinetti and Hügli, 
1994) controls the robot to a fixed pose defined with 
respect to particular configurations of the 
environment: salient corners and reflex corners. The 
pose, where the robot is moved, is defined on the 
bisectrice of the corner, at a fixed distance from it. 
This behavior receives range profiles from the 
structured light vision system Sensus500 and moves 
the robot such as to minimize the errors between a 
reference corner and the observed corner. Another 
vision-based self-positioning behavior is the homing 
on target behavior which positions the robot with 
respect to a pair of visual landmarks. 
 
The behavior which distinguishes the different 
homing sites is called localization behavior (Tièche 
et al., 1996). It uses a gray scale video camera 
pointing to the ceiling and identifies a site by 
comparing snapshots taken when the robot stands in 
a self-positioning site with a set of reference images 
stored in a database. It returns the identification of 
the unknown place. The combination of both a 
homing behavior and the localization behavior 
allows to define the distinctive places very accurately 
and in a non-ambiguous way. 
 
The behaviors which are related to the robot 
displacements between sites are called the move to 
behaviors. One of these behaviors controls the robot 
to follow a wall detected by means of the structured 
light vision system Sensus500. Another one is 
activated when a reflective landmark is seen. It 
moves the robot towards the landmark and stops it at 
a fixed distance to the site. 
 
 

4. TOPOLOGICAL MAP 
 
Topological maps represent the environment by 
neighborhood relationships between distinctive 
places. Formally, the topological map consists of a 
graph G = (V , E) , where  V = {v1,K , vN}  is the set 
of N  nodes, and E = {eij} ={(vi ,v j)} the set of M  
edges. It may be considered in two ways. From the 
topological point of view, it is centered on a 
symbolic representation of the environment. From 
the robot resources point of view, the map is based 
on the interactions of robot sensors and actuators 
performed by the behaviors. In the frame of this 
work, each node corresponds to a self-positioning 
site and an edge to the displacement of the robot 
between two such sites. The behavior associated to 
the nodes are the homing on corner and the 
localization behaviors, while a move to behavior 
goes with edges. 
 

The choice of corners as environmental 
characteristics for self-positioning behaviors is 
justified by the fact that the corners are easily 
detected, represented in a large number in man-made 
environments and that they appear in stable parts of 
the environment such as tables, walls, doors, etc. 
This gives the map a high accuracy and a good 
stability.  
 
 

5. ADDITION OF GEOMETRICAL 
INFORMATION 

 
This section considers the extension of the 
topological map by adding geometrical information. 
The idea is to record the odometer path while the 
robot moves, between sites, along the edges of the 
topological graph. The result is a serie of odometric 
paths which must be integrated to form a consistent 
global map. 
 
More precisely, the topological map is built by 
moving the robot, manually or with adequate 
behaviors from corner to corners. This building 
process provides a sequence of visited nodes that is 
stored in a list: Σ = vi{ }1≤i ≤M +1. The robot pose 

p = (x, y,ϕ )t  is a 3-dimensional value that defines 
the position and the turret orientation of the robot, in 
a single frame of reference. 
 
The odometric paths provide geometrical relations 
between poses the robot takes in self-positioning 
sites. A path w AB  between two sites A (x A , yA ,ϕ A )t  
and B(x B, yB , ϕB )t , is represented by a 3-
dimensional vector w AB = (dAB , αAB ,β AB )t . 
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Fig 1: The path w AB  between two robot poses A and 

B is defined by the 3-dimensional vector 
(dAB, α AB, βAB )t  

 
Assuming the robot is in pose A, α AB  is the rotation 
angle which brings the turret to point towards the 
pose B, dAB  is the distance between the two poses A 
and B, and β AB  is the rotation angle that aligns the 
turret to the pose B. A compounding operation is 
defined to express a pose pB , in term of a pose pA  
and a path w AB  linking pA  and pB . This 
compounding operation is denoted as: 
pB = pA ⊕ rAB . 
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The compound operation is associative on the right 
  p = (( po ⊕ w1) ⊕ w2 )K ) ⊕ wk , and a sequence of 
compounding operations is denoted as: 
 

 p = po
i=1

k
⊕ wi  (2) 

 
In the same way, the inverse compounding operation 
  pB * pA = wAB  expresses the path between two sites 
in terms of the poses of both sites. 
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The inverse path can also be defined:   * wAB = w BA . 
It implies that if a path is known, the inverse path can 
be computed. These compounding operators are 
close to those used by Lu and Milios (1997), but 
differ because the paths are not defined the same 
way.  
 
 

6. CONSISTENT GEOMETRICAL MAP 
CONSTRUCTION 

 
Given the topological map G  and the associated 
information: the M  measured geometrical paths w ij

m , 

and the sequence of explored nodes Σ . The 
geometrical map building problem is to determine 
N − 1 robot poses   

) p i = ( ) x i ,
) y i ,

) 
ϕ i )t  in a single 

coordinate system. One pose is given a priori and 
defines the origin of the system. Arbitrarily, the pose 
of the first explored node is chosen: 
pΣ (1) = (0, 0, 0) t  . 
 
Five methods to solve this problem are proposed 
hereafter. 
 
 
 
 
 
6.1 M1: Path integration along the exploration 

sequence. 
 

This method takes the nodes from the exploration list 
one by one and finds their poses by simple 
integration of successive paths. 
Formally, the pose  

) p Σ(l )  of the node Σ(l)  can be 
expressed by compounding the origin pose with the 
sequence of paths joining Σ(l): 
 

 
 

) p Σ(l ) = pΣ(1)
k=2

l
⊕ wΣ(k−1)Σ(k )

m  (4) 

 
As soon as circuits appear in the graph, nodes are 
visited more than one time, hence their poses are 
computed several times. In order to assign a single 
pose to each node, this method keeps only the first 
computed pose and discards the remaining. 
 
The complexity of M1 is O(M), where M is the 
number of edges. 
 
 
6.2 M2: Path integration without circuits along the 

exploration sequence 
 
This method also takes the nodes form the 
exploration list one by one . The pose is found by 
integration of successive paths, but when a circuit is 
closed on the explored sequence, the integration is 
interrupted and restarted from the first node 
belonging to the circuit. In this case, one pose is 
assigned to each node. 
 
The complexity of M2 is O(M)  
 
 
6.3 M3: Path integration along the minimum 

distance tree 
 
This method determines the pose of a node by 
compounding the original pose with a sequence of 
paths. In the graph, several sequences possibly link 
the origin to the current node. The chosen sequence 
is the one which has the minimum "distance" cost, 
defined as the sum of the distance d  of each path 
along the sequence. This method finds the minimum 
spanning tree for a given root. 
 
The complexity of M3 is O(MN). 
 
 
6.4 M4: Path integration along the minimum 

orientation tree 
 
This method determines the pose of a node by 
compounding the original pose with a sequence of 
paths. In the graph, several sequences possibly link 
the origin to the current node. The chosen sequence 
has the minimum "angular" cost, defined as the sum 
of the angular variation α + β  of each path along 
the sequence. This method finds the minimum 
spanning tree for a given root. 
The complexity of M4 is O(MN). 
 



 

 

 
6.5 M5: Least square minimization 
 
The least square method minimizes the error between 
the measured paths wij

m  and the estimated paths  
) w ij . 

The function to minimize is: 
   f ( ) w ) = (w m − ) w )t P(wm − ) w )   where P is a 
matrix of weights. 
The estimated relations can be expressed as a non 
linear function of the estimated poses: 

    
) w ij = ) p j @ ) p i . 

Hence the function to minimize depends on the 
estimated robot poses   f ( ) p ) . It is minimum or 
maximum if its gradient is equal to zero. 
 

 
  
∇f ( ) p ) =

∂f ( ) p )
∂) p 

= 0  (5) 

 
This provides a system of 3N  non linear equations 
with 3N  unknown variables. It is solved by means of 
the Newton-Raphson iterative method.  
 
The complexity of M5 is O(N3). 
 
 

7. EXPERIMENTAL RESULTS 
 
This section presents the geometrical map 
reconstruction for a real environment explored by a 
Nomad200 mobile robot. The results of the five 
methods are compared. 
 
 
7.1 Exact map 
 
The real environment is composed of 28 homing sites 
(11 reflex corners, 17 salient corners) distributed 
over a 10x12m surface (figure 2a). In order to 
compare the reconstructed maps of robot poses 

  
) p i = () x i ,

) y i ,
) 
ϕ i)

t , an exact map of the robot poses 

pi
e = (xi

e ,yi
e,ϕ i

e) t  is measured. It is constructed in 
two steps. First, the corners are mapped by means of 
a precise measure. Then, the robot pose with respect 
to a corner is established, by averaging several 
measurements. Finally, these values are added to the 
precise map of corners, in order to obtain the exact 
map of robot poses. 
 
 
7.2 Comparison of exact and estimated map 
 
After a rigid alignment transformation, the exact and 
the estimated maps are compared. The difference 
between both maps is expressed as the root mean 
square of the distance Δd  and the difference of 
orientation Δϕ , between corresponding site poses. 
 

 Δd =
1
N

(xi
e − ˆ x i )

2 + (yi
e − ˆ y i )

2

N
∑  (6) 

 Δϕ =
1
N

(ϕ i
e − ˆ ϕ i)

2

N
∑  (7) 

 
 
7.3 List of explored paths 
 
The paths have been measured by odometers while 
the robot was exploring its environment. Seventy-
two paths between the twenty-eight self-positioning 
sites were measured. The figure 2b shows the 
compounding of the starting pose with the 72 paths, 
along the sequence of exploration. Note that if a node 
is visited more than one time, it is represented by 
several site poses. 
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Fig. 2. a) Exact robot poses map b) Integration of all 

measured paths 
 
 
7.4 Estimated maps 
 
Figure 3 compares the reconstructed geometrical 
maps with the exact maps for the five methods 
M1...M5. The edges correspond to the paths needed 
to build the estimated maps. Note that with methods 
M2, M3, M4 many edges are not taken into account. 
 
Obviously, the map provided by M1 is bad, those 
provided by M2, M3 and M4 show acceptable 
results, while M5 is excellent. The visual results are 
confirmed by comparing the reconstruction errors 
reported in table 1, expressed by the root mean 
square value of distance and angular differences 
between site poses of exact and reconstructed map. 



 

 

Table 1 Difference between exact and estimated map 
 
 M1 M2 M3 M4 M5 
Δd  [cm] 153.0 47.9 40.4 28.3 10.7 
Δϕ  [∞]  28.4 11.1 5.3 5.7 2.0 

 
For every method except M5, the errors are 
accumulated along the paths. Hence the poses 
become less accurate as soon as they are far from the 
origin. Furthermore, a variation in the measures can 
modify the map significantly. Since M5 is stable and 
very accurate, it will be preferred even if the 
processing time is longer. 
 

 
8. CONCLUSIONS 

 
This paper shows how to extend the knowledge of a 
topological map of self-positioning sites by 
construction of a consistent associated geometrical 
map. Five methods have been proposed to determine 
the robot poses in a single frame of reference, using 
the topological map knowledge and odometric 
measurements along the paths linking robot poses. 
Four methods integrate paths according to different 
strategies and one uses a global minimization. 
These geometrical map building methods were 
implemented in a development environment 
involving a mobile robot Nomad200, and were tested 
on a map reconstruction problem with 28 self-
positioning sites. The five methods were evaluated 
numerically by comparison of reconstruction errors 
and graphically by comparing the maps they deliver 

with an exact geometrical map. The least square 
method shows best accuracy and gives excellent 
results even for a large environment. 
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