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Summary 

Flexible production sets new requirements in quality control. Vision systems must be highly versatile to 
cope with the ever changing production cycles and setup time must be reduced to a minimum so as to 
reduce downtime. This paper considers an automatic configurator tool that assists the operator during the 
setup of a visual inspection system and discusses heuristic search methods used to speed up the 
configuration optimisation process. 

1. Introduction 

Most vision-based inspection systems use image processing methods with inherent parameters. The quality 
of the inspection process will depend on a careful choice for these parameters values. This work is related 
to the automated configuration of vision-based inspection systems which means the search of the best set 
among the sets of possible parameters values. This search process is based on a score function reflecting 
the quality of the inspection system.  

The present paper will discuss the search methods employed, their characteristics and the way they were 
improved to take advantage of the peculiarities of score functions of inspection systems. Next section 
briefly summarizes the way used to perform the system setup and how the search methods will be 
evaluated. Third section will present the simulated annealing search method, and discuss its theoretical 
efficiency in this context. Fourth section will describe the used genetic search method. Fifth section will 
present some results gathered with various versions of the search methods on an industrial inspection 
system for integrated circuits markings. Finally a conclusion ends this paper. 

 

2. Setup of an inspection system 

The inspection system must be setup when it is applied on a new task . This setup process involves several 
operations as depicted in figure 1. The operator defines the control rules: measurements and decision rules. 
He also selects some representative devices forming a learning set of samples. This learning set is used to 
configure some parameters of the control rules, mainly those of the image processing (thresholds, kernel 
size, …) and decision boundaries. This step may be complex and lengthy.  Thus, it is desirable to facilitate 
this control rules configuration by mean of an automatic configurator. 
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Figure 1:Setup of a quality control system 

To achieve this, the developed configurator will do an iterative process, during which it will alternately 
propose a possible configuration (set of parameters) for the vision system and rate this configuration. The 
rating will be done with the help of a score function S whose definition will depend on the quality control 
rules used. An example of such a function has been discussed in a previous publication 1. The configuration 
proposal will be done by a search method aimed at maximizing the score. 

The search should be limited to meaningful values for the different parameters. Each parameter can be 
given a permitted range of values. On this basis, a high dimensional discrete score function S that rates the 
control system can be defined over a parametric space P. The goal of the configurator is to find the 
configuration within P that maximizes the score. Due to the size and high dimensionality of P, exhaustive 
search is not an option and better search methods have to be used. 

The systems configuration should be done quickly and thus, the faster the better for the search method. We 
will  consider two heuristic search methods and take a random trial method as basis to rate them. An 
acceleration function A(α) will be defined as  
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where τ is the number of trials giving a 50% confidence to reach a fraction α  of the maximum score. 

A few peculiarities of the score function must be noted : 

� The score is interdependent on all the parameters and so it is a complex and unpredictable function 

� As the different parameters ranges are given independently, meaningful configurations are only a small 
subset of P 

� A realistic quality control system should exhibit a minimum of  stability and thus the “good” 
configurations are expected to form an extended cluster in P. 

3. Simulated annealing 

This search method is a mixture of systematic search by gradient ascent with a random process. It is also 
known as stochastic relaxation 2. We use, here, a particular form of this method that can be summarized as 
an iterative process consisting of 2 operations: 

� Select a random configuration of P  - random initialization – 

� Do the best transition within the 2.n closest neighbors until a maximum is reached 

n is the dimensionality of parametric space and “best” means the one whose configuration gives the highest 
score. 
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3.1. Acceleration estimation 

We shall now consider how this method theoretically compares to random search according to acceleration. 
To do this we make use of the concepts of cumulative distribution function and convergence basin of the 
score function. 

For the random reference method, if successive trials are independent (no memory of past trials), each has a 
probability equal to 1/card{P} to be the best configuration (supposed to be unique), Consequently, a finite 
number of random trials nrnd can guarantee a given probability PrMAX to find the maximum: 

 

nrnd PrMAX( )=
log(1− PrMAX )

log
card P{ }−1

card P{ }
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In a similar way, the simulated annealing method will have a minimum number of trials to guarantee a 
probability to reach the maximum: 

 ( ) ( ) ><⋅= lNn MAXMAXSA PrPr  (3) 

where <l> is the average numbers of trials performed for one iteration of the algorithm, and N is the 
number of iterations that guarantee a given probability to find the maximum. N will depend on the set of 
points in P from which gradient ascent converges to the optimal score. This set will be named convergence 
basin (CB). 

Acceleration A(α) is simply the ratio between equations 2 and 3, To calculate it in a general case (α<1), we 
define an “annealing score function” S’ where score of a given configuration is replaced by maximum 
score of the CB to which it belongs. Figure 2 shows a one-dimensional convergence space 
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Figure 2: score and modified score function according to convergence space 

 

With the help of cumulative distribution functions DS and DS’ of S resp. S’, the acceleration was calculated: 
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To help understand this result we consider two example cases. In left half of figure 3 we have a 2-
dimensional score function with a single meaningful configuration. Even in this case, simulated annealing 
perform as well as random search(A=1). On the right we calculate the acceleration for a score function 
being nil except for a circular space of radius 20. We observe that acceleration strongly depends on the α 
factor. This means that simulated annealing is faster than random search as long as the expected 
performance for the system is high. This corresponds to our requirements.  
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Figure 3: Score functions and corresponding acceleration 

 

Now, we shall take into account the peculiarities of the score function S to increase the acceleration A. 

3.2. Initialization enhancement 

As stated above, lots of possible configuration are useless and the score function take 0-value over a large 
fraction of P. Furthermore, a quality control system should be stable and it is unlikely to have isolated good 
configurations. So, we will modify the search method, by iterating the random initialization step until a 
usable configuration (score>0) is found. This will spare 2n controls many times, resulting in a much lower 
<l> while only slightly degrading the first term of equation 4. 

3.3. Addition of “memory” 

A second improvement will be the addition of memory to the search: each time a score for a configuration 
has to be calculated, a check will verify that it has not yet be done; if it was previously calculated the score 
is just fetched from the memory, otherwise the score is calculated and stored into memory. This might 
improve the configuration speed for systems when the scores calculation takes a significant amount of time. 
This improvement will lower the average number of effective trials <l> performed at each iteration. 
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4. Genetic Algorithm (GA) 

Genetic algorithms 3,4 that make use of a survival of the fittest law inspired from biology have been used to 
solve this configuration optimization problem. Each parameter of the quality control system will be 
considered as a chromosome of the configuration entity, and selection will be based upon the associated 
score of the entity. 

Among the numerous variants of the method, we did some choices to reach a good performance 
(acceleration) for the configurator. Here is a short review of the operations that are performed, after the 
initialization, at each iteration of the GA: 

1. Selection of pairs of entities (configurations) among the previously tested 

2. crossover: creation of new entities by combination of the selected pairs 

3. mutation: perturbation of these new entities 

4. evaluation of the new entities 

 

Next figure shows the cycle of this method. 

 

Figure 4: genetic algorithm summary 

 

We want this method to be able to come out of suboptimal solutions by an extended exploration of the 
untested parts of P. Somehow in a similar way as our simulated annealing  that starts over randomly after 
each completed gradient ascent. We do this with a high rate of random mutations – 10% - on all 
parameters of the newly generated configurations. The remaining unchanged 90% of parameters will 
exploit the promising configurations of the former iteration. An extended linear crossover operator will 
also help to come out of local traps of the score function. It will generate offsprings that may be 
extrapolation of the parents1. 

4.1 Algorithm enhancements 

The peculiarities of the score function may also be used here to enhance the algorithm. The initialization 
step can be iterated at the start of the algorithm to guarantee that meaningful configurations (score>0) are 
within the initial set of entities. This will prevent a probable waste of search time in an uninteresting 
subspace of P. The introduction of the “memory” feature to avoid unnecessary evaluations (score 
calculations) will probably save some time when the algorithm converges towards a small subspace of P 
that has already been expoited.  
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5. Experiments 

A configurator was implemented for a quality control system involved in the inspection of integrated 
circuits. The particular application of our test is the inspection of the markings printed on the top cover of 
such circuits. This involves the configuration of five parameters related to image processing, and two 
additional parameters for the decision rule. These parameters span  a discrete 7-dimensional parametric 
space P. Given specific ranges for the parameters, the search space comprises over 106 configurations. So 
in this context, as each evaluation lasts about 100 ms, search acceleration is required. Next figure displays 
the inspected marking after preprocessing with 2 different configurations. 

  

Figure 5: resulting images from a well configured system (left) and from a poorly configured(right) 

We will now present the results of the two discussed search methods and see the effect of the enhancements 
in this application 

Repeated automatic configurations of the system (with fixed duration) were done to gather statistical 
significant data. Plots of the score reached on average after a given time of search let us appreciate how 
quick the search algorithms are to find a good solution. 

The curves of the simulated annealing method in figure 6 show that this method brings a real improvement 
versus a random search approach. This is remarquable as less than 10% of P corresponds to a meaningful 
configuration of the system. Thus, iterated initialization, is an effective improvement(factor 2 speedup of 
curves 1,2 versus 3,4). The memory feature doesn’t show any real speedup of the search in this case as the 
largest part of P is still untested and thus it is not used. 
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Figure 6 : Simulated annealing versus random method 
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The genetic algorithm approach exhibits similar behaviour as simulated annealing: a sensible speedup 
against random trials. The improvement due to a condition on the initial population slightly improves the 
performance of the method whereas the memory feature  doesn’t make much difference. 
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Figure 7 : genetic algorithm versus random method 

 

On the basis of a data set resulting from an exhaustive search over P for the configuration of  the inspection 
system, we calculated the acceleration function of the basic simulated annealing method. The curve of 
figure 8 is the logarithm of acceleration. Simulated annealing is efficient only for good solutions (α>0.5). 
This was expected as one example of figure 3 showed that not so good solutions tend to have a much 
higher convergence basin. Luckily we are not interested in poor solutions and the search quickly reaches 
the range where α tends to 1. The observed acceleration in this experiment is around a factor 10. So, the 
acceleration due to the search method presented here will effectively help to speed up the configuration of 
the quality control system. 
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Figure 8:  Acceleration logarithm as a function of expected score (SA search) 
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6. Conclusions 

In the context of the setup of a versatile vision-based inspection system, two heuristic search algorithms 
were considered for automatizing its configuration: simulated  annealing and genetic search. First the 
methods are described and specific choices are explained. An analysis relates the acceleration of the 
simulated annealing method  to the convergence basin of the score function and shows that weak conditions 
are sufficient for this method to be efficient. Then the methods are tested in an integrated circuit marking 
inspection task. They achieve a 10 times speedup versus a random trial method. They permit the system’s 
configuration to be done in a few minutes, significantly reducing the production downtime. 
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