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Abstract 

The iterative closest point (ICP) algorithm is widely 
used for the registration of geometric data. One of its 
main drawbacks is its quadratic time complexity O(N2) 
with the shapes number of points N, which implies long 
processing time, especially when using high resolution 
data. This paper proposes to accelerate the process by a 
coarse to fine multiresolution approach in which a 
solution at a coarse level is successively improved at a 
finer level of representation. Specifically, it investigates 
this multiresolution ICP approach when coupled with the 
tree search or the neighbor search closest point 
algorithms. A theoretical and practical analysis and a 
comparison of the considered algorithms are presented. 
Confirming the success of the multiresolution scheme, the 
results also show that this combination permits to create a 
very fast ICP algorithm, gaining speed up to a factor 27 
over a standard fast ICP algorithm. 

1. Introduction 

Shape registration consists in finding the correct 
alignment of two or more sets of data and plays an 
important role in today's computer vision. For example, 
the modeling of 3D object generally requires to assemble 
several complementary views into a single representation. 

The iterative closest point (ICP) algorithm [2] is one of 
the best known and widely used low level geometric 
matching algorithms. It finds an optimal match iteratively. 
Each iteration proceeds by first creating closest point pairs 
between two sets of points (or more generally geometric 
data) and then by computing the rigid transformation (R, 
t) which minimizes the coupling error e of the two data 
sets. Several variants of the ICP have been proposed, and 
a recent overview and comparison can be found in [7]. 

The ICP algorithm has a basic complexity of O(NpNx), 
where Np and Nx represent the number of points 
considered in each data sets. Matching high resolution 
shapes requires heavy computations and several solutions 
to speed up the algorithm have been proposed. One can 
separate the different methods in three main classes: 
reduction of the number of iteration, reduction of the 
number of data points and acceleration of the closest 
points search. 

Besl [2] and later Simon [9] proposed variations 
named "accelerated ICP" which use a linear or quadratic 

extrapolation of the registration parameters to reduce the 
number of iterations. Typical results from these authors 
showed reduction of the computation time by a factor of 3 
and 4 respectively. 

Some authors proposed to use a coarse to fine strategy 
[10, 11]. They execute the first iterations using a lower 
resolution, like 1/4 or 1/5 of the points, and finish with 
fine matching using full resolution. Zhang [11] found a 
reduction factor of about 2 to 4 using this strategy. Chen 
and Medioni [4] and Brett [3] proposed to use subsets of 
the surfaces sitting respectively in smooth areas (for 
robust point to plane computation) and in high curvature 
areas (to keep significant features). 

Besl [2] also suggested to use a k dimensional binary 
search tree, k-D tree, to decrease closest point search time. 
Theoretically, searching the closest point in a k-D tree 
having N entries is of complexity O(logN). Thus, the 
global complexity of the ICP algorithm becomes O(Np 
logNx). Practical results [8, 9] showed gains of about 15 
for meshes containing ≈2500 pts. Benjemaa [1] proposed 
to project points into Z-buffers and then to perform local 
search in them. Recently, Jost [5] proposed the “neighbor 
search” closest point algorithm. It assumes that two 
neighbors on a surface possess closest points on the other 
surface that are neighbors and uses this property to obtain 
a first approximation of the closest point. It then refines 
the result with a local search in the range image. This 
method permits to avoid a global search for most points 
and leads to a closest points search (and therefore ICP) 
algorithm with a complexity of O(Np). 

This paper proposes to accelerate the process by 
mixing a coarse to fine multiresolution approach with a 
reduction of the closest point search complexity. This is 
possible because both methods are quite independent and 
it should permit one to create a very fast ICP algorithm. 
This paper thus presents and analyses the multiresolution 
approach coupled with a k-D tree search or the neighbor 
search closest point algorithms, both in terms of speed and 
robustness. 

2. Multiresolution ICP algorithm 

The principle of multiresolution ICP is to make the 
first few iterations using down sampled data and to 
progressively increase the resolution of the data in the 
following iterations, creating a coarse to fine matching. 
The main expected advantage of the multiresolution is the 



reduction of the computational cost, given that the cost of 
each iterations made at lower resolutions is reduced. In 
addition, it is expected this way that the total number of 
iterations will be reduced, mainly because a lower 
resolution matching generally implies more important 
rotations and translations, meaning a faster convergence. 

Moreover, multiresolution matching is expected to 
have an added beneficial impact when combined with the 
tree search or the neighbor search methods. When using a 
tree search, the first iterations require a longer search time 
because of the coarse alignment of the data [5,11]. With 
multiresolution, these iterations are typically done with a 
low resolution, which greatly reduces the search time. 
When using the neighbor search closest point algorithm, 
higher resolutions and coarser matching decreases the 
exactness of the closest points pairing which typically 
reduces the range of successful initial configurations (SIC) 
[5]. Using a lower resolution for the initial iterations, 
should permit to avoid this problem. 

2.1. Basic algorithm 

The multiresolution pattern chosen here is to divide the 
number of points by a factor N for each resolution step. 
The lowest possible resolution is defined by keeping the 
number of points of the reduced data sets above a 
minimum value (typically 50 or 100). 

The number of iterations at each resolution step isn’t 
fixed. Instead, the algorithm goes to the next resolution 
step automatically when a defined stop criterion - in this 
case when the change in coupling error falls below a 
threshold - is reached at the current one. 

2.2. Cost reduction factor 

As seen before, the complexity of the ICP algorithm 
changes when using tree search or neighbor search. From 
O(NpNx). originally, it becomes O(Np logNx) with a tree 
search and O(Np) with the neighbor search. Consequently, 
the cost reduction factors between the different resolutions 
are different in these 3 cases: if Np and Nx are reduced by a 
factor N, we obtain the cost reduction factors for an 
iteration showed in table 1. 

Table 1. Cost reduction factors for data reduced with a 
factor N 

 Reduce Np reduce Nx 
normal ICP N N 
k-D tree ICP N log(Nx)/( log(Nx)-log(N)) 
neighbor 
search ICP N 1 

 
If we examine the k-D tree case, the value of the 

expression “log(Nx)/( log(Nx)-log(N))” is typically 
situated between 1 and 2. This means that it is basically 
worthless to use a lower resolution on data set X when 
using a tree search. Firstly because the cost reduction 

value is much lower than when using a similar resolution 
on data set P and secondly because it would imply to build 
a new tree at each resolution. 

In the case of the neighbor search, the reduction of 
data set X doesn’t have a direct influence on the cost at 
all. Note, however, that in practice, data set X needs to be 
reduced as well in order that the relative size of the local 
search area stays the same. 

Taking the above into account, the cost reduction 
factor for one iteration is N if both data sets are reduced 
by a factor N, in both k-D tree and neighbor search cases, 
opposed to a value of N2 in the normal ICP case. 

2.3. Estimation of the speedup gain 

Now, say m is the number of iterations needed for a 
registration in monoresolution and ni is the number of 
iterations performed at resolution step i for the same 
registration in a k steps multiresolution scheme. The cost 
of the complete registration is: 

-monoresolution:  m C1 

-multires.:         n1C1 + ...+ n kC k = n1C1 +
n2 C1

N
+ ... +

nk C1

Nk-1  

and the gain of multiresolution is:  

 G N =
m

n1 + n 2

N
+ n 3

N2 + ... + nk

N k−1

 (1) 

To analyze the numerical value of the gain, we make 
the hypothesis that the total number of iterations remains 
the same in both case. We will also distinguish 3 cases 
here on how iterations are distributed for each steps: 

  

1) a constant number of iterations at each step 
2) an increasing number of iterations with the higher 

resolutions 
3) a decreasing number of iterations with the higher 

resolutions. 
 

Basically, they can be seen as medium, worst and best 
theoretical cases. 

The associated linear functions of ni are: 

 1. n i =
m
k

,   2. n i = m
k +1 − i

1 +2 + ... + k( )
,   3. n i = m

i
1 +2 + ... + k( )

 

This gives us the following result: 
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Figure 1 shows a graphical presentation of these 
functions for N=4. One can see that the higher the number 
of steps, the higher the expected gain is. The theoretical 
best case (3) has a quadratic behavior, while gain 
functions 1 and 2 are nearly linear. 
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Figure 1. Expected multiresolution gains G(k) for fast 

ICP algorithms, for N= 4 

3. Experiments and results 

The multiresolution ICP algorithm has been tested on 
different data and compared with classical fast ICP 
algorithms using tree search and neighbor search. The 
comparison focuses on two features: computation speed 
and matching quality. 

3.1. Matching quality comparison 

Two measures can be considered to examine the 
quality of the matching procedure: the matching error and 
the domain of convergence. To compare the matching 
error, the algorithm must converge and the resulting 
alignment has to be the same or at least in the same error 
range as when matching using exact closest points. 

To examine the domain of convergence, we use a 
method presented in [6] that compares the domains of 
successful initial configurations (SIC). A successful initial 
configuration is basically defined by a relative initial 
positioning of the two data sets that leads to a successful 
matching. As examining the whole configuration space, 
which possesses 6 dimensions, is not conceivable (due to 
both heavy computations and difficulty to display the 
results), the idea is to examine a subset of “interesting” 
initial configurations, liable to converge successfully. The 
dedicated setup [6] consists in a 3 dimensional space, the 
different initial configurations being defined by placing 
one surface on several points of the circumsphere of the 
other one. The results are plotted in 2D in a SIC-map, 
where black sectors represent the successful initial 
configurations (figure 3). The higher the number of black 
sectors the bigger the SIC domain. 

3.2. Matching experiment 

The presented experimental data set consists in 2 
partially overlapping range images of a duck toy (figure 
2). They typically represents the problem of views 
registration for virtual modeling. The overlap of both sets 
is approximately 50% of their total surface. 

Full resolution data (approx. 24000 points, which 
implies k=5 resolution steps with N=4) and down-sampled 

data (approx. 6000 points, which implies k=4 resolution 
steps with N=4) are considered for testing. For practical 
reasons, the down sampled data have been used to 
compute the SIC ranges, as the time requested for the 
whole computation at full resolution was too long. On the 
other hand, a sub set of 30 initial configurations has been 
chosen to test the matching of full resolution data. 

 

 
Figure 2. Surface rendering of the partially overlapping 

range images of a duck toy 
 
Matching quality. A comparison of the average 
registration errors shows that, in case of successful 
convergence, all methods possess errors in the same 
range. These errors are in the order of less than 0.5° in 
rotation and 0.2% in translation. 
 

a)

d)

 
Figure 3. SIC-maps: a) tree search, 

b) multiresolution and tree search, c) neighbor search, 
d) multiresolution and neighbor search 

The SIC-maps of the 4 considered cases using down 
sampled data can be found in figure 3. The results show 
that multiresolution does not affect the domain of 
successful convergence when coupled with a tree search 
and has clear beneficial effects on it when coupled with 
the neighbor search. 

In the latter case, note that the resolution was too big 
for the neighbor search to work correctly (with a 9x9 



search area) and the SIC range is much reduced in this 
case (3c). However, the SIC range obtained combining 
multiresolution and neighbor search (3d) is again very 
similar to the one obtained while using a k-D tree. 

The results are even better when using full resolution 
data: in this case, the range of SIC is clearly improved by 
the multiresolution in both cases, using a k-D tree and the 
neighbor search. 

These results confirm that the multiresolution scheme 
does not affect the matching quality for both the matching 
error and the domain of convergence. On the contrary, 
they show beneficial effects on the SIC range, especially 
when combined with the neighbor search algorithm. 

 
Computation time. Table 2 presents a comparison of the 
average total computation time for the successful 
registrations, using the different acceleration methods on 
the full resolution data sets. The results related to neighbor 
search have been grayed out to reflect that they come from 
a single measurement. 

The multiresolution scheme permits to reduce the total 
registration time by an average factor between 8.5 and 14 
times for the different cases. These results are at least 
equal to or better than the theoretical best case value 
found with equation 4.3, G3

4(5) = 8.5. Practically, one can 
effectively see a decreasing number of iterations in the 
higher resolutions steps, although close to but not as 
important as the best theoretical case. The high gain 
results can be further explained by the fact that other 
factors were not taken into account in the theoretical 
estimations, like the reduction of the total number of 
iterations, especially when using the neighbor search, or 
the beneficial effects of the very low resolution in the first 
iterations when using a tree search. 

Table 2. Comparison of the total computation time of 
the registration (at full resolution) using the different 

acceleration methods 

avg. total time 
(s)

avg. number of 
iterations

avg. relative 
gain

kD tree 504.1 42 1.0
neighbor search 259.0 90 1.9
kD tree MR 59.3 36 8.5
neighbor search MR 18.8 34 26.8  

 
Finally, the multiresolution neighbor search ICP can 

be up to 3 times faster than the multiresolution tree search 
ICP and nearly 27 times faster than a k-D tree ICP, which 
shows the advantage of neighbor search. This gain is also 
expected to be even higher for bigger data sets, due to the 
smaller complexity of the neighbor search algorithm. 

One can also note that these relative gains refer to a 
fast ICP algorithm. The approximate gain in speed over a 
non-accelerated ICP algorithm is over 1300! 

4. Conclusion 

This paper proposes and analyses a solution for fast 
shape registration by applying, to the ICP algorithm, a 
combination of a coarse to fine multiresolution scheme 
and a fast closest point search. 

Multiresolution combined with a k-D tree search and a 
neighbor search methods have been theoretically and 
experimentally compared in a 3D shape matching test. In 
the experiments, special attention is given to allow only 
good quality matches and not to go in any quality versus 
speedup compromise. Under these circumstances, the 
practically observed speedup gains are as good or even 
better than the best theoretical expectations. 

Specifically, in both cases of fast ICP matching using a 
tree search or a neighbor search, multiresolution improves 
the registration speed by factors up to 14. Combining 
multiresolution with the neighbor search method, the 
registration can be up to around 27 times faster than when 
using a tree search - 1300 faster than a regular ICP -, 
which represents a very high-performance ICP algorithm. 

Finally, the pure speedup potential goes together with 
improvements observed with respect to the convergence 
speed and the matching quality. This clearly shows that 
the multiresolution scheme exploits the fundamental 
nature of shape registration to substantially contributes to 
improve its computation. 
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