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Summary 

The research presented in this Ph.D. contributes to the 
development of the three-dimensional (3D) vision field. More 
precisely, it addresses the problem of the registration, or 
geometric matching, of 3D datasets, which consists in finding 
their correct relative alignment based on their intrinsic 
properties. Typical applications using registration as part of their 
working principle include the modelling of 3D objects, object 
recognition or quality inspection. 

The iterative closest point (ICP) algorithm is considered in 
this work as our basic registration method. The ICP algorithm 
processes iteratively. At each iteration, it first creates closest 
point correspondences between two datasets and it then 
minimizes the average distance of the couplings by a rigid 
transformation. 

The matching quality and the robustness of the ICP can be 
improved by considering additional features, such as colour or 
curvature and by adding weights to the couplings found in the 
first step of each iteration. 

The main practical difficulty of the ICP algorithm is that it 
requires heavy computations and, thus, several speeding up 
methods have been proposed. A fairly complete review of the 
different methods is proposed in this work. The main conclusion 
of this review is that most of the existing solutions lead to a 
tradeoff between speeding up and quality of the matching. 

Two new algorithms are proposed to accelerate the ICP. First 
of all, the neighbour search algorithm, which relies on 
neighbourhood relationships in the datasets to restrict the search 
of the closest point to a local subset. Then, a multi-resolution 
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scheme is also proposed and analysed. It proceeds from coarse to 
fine and successively improves a previous solution at the finer 
representation level. One can note that both solutions for the 
speeding up of the ICP have been developed in a perspective to 
avoid the tradeoff with matching quality that is imposed by most 
existing solutions. 

Finally, a complete object digitising system is presented. It 
combines data from several unpositioned range images or 3D 
meshes taken from different viewpoints to create a complete 
virtual model. In addition to showing a practical use for the 
registration techniques described above, building the system also 
permitted the development of new algorithms and methods for 
colour digitising, mesh fusion and texture handling. 
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Résumé 

La recherche présentée dans ce travail de thèse contribue au 
développement de la vision tridimensionnelle (3D). Plus 
précisément, elle aborde le problème de la mise en 
correspondance géométrique de données 3D, qui consiste à 
déterminer l’alignement relatif correct de ces ensembles de 
données en se basant uniquement sur leurs propriétés 
intrinsèques. Parmi les applications typiques utilisant la mise en 
correspondance, on peut citer la modélisation d’objet 3D, la 
reconnaissance d’objet ou encore l’inspection de qualité. 

L’algorithme ICP (pour « Iterative Closest Point ») est la 
méthode de mise en correspondance de base considérée dans ce 
travail. L’ICP procède itérativement, comme son nom l’indique. A 
chaque itération, les points correspondants les plus proches entre 
deux ensembles de données sont tout d’abord définis. La distance 
moyenne des couples précédemment créés est ensuite minimisée 
par une transformation rigide. 

La qualité de la mise en correspondance ainsi que sa 
robustesse peuvent être améliorées en faisant appel à des 
caractéristiques supplémentaires liées aux objets, comme la 
couleur ou la courbure, et en pondérant les couples créés dans la 
première partie de chaque itération. 

La principale difficulté pratique de l’ICP est qu’il nécessite un 
nombre élevé de calculs. En conséquence, plusieurs méthodes ont 
été développées afin de l’accélérer. Une revue aussi complète que 
possible de ces méthodes est proposée dans ce travail. Sa 
conclusion majeure est que la plupart des solutions existantes 
nécessitent un compromis entre accélération et qualité de la mise 
en correspondance. 
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Deux nouveaux algorithmes pour l’accélération de l’ICP sont 
aussi proposés. Premièrement l’algorithme de recherche de 
voisinage (neighbour search algorithm) qui compte sur les 
relations de voisinage existant dans les données pour restreindre 
l’espace de recherche des points les plus proches à un sous-
ensemble des données. Deuxièmement, un schéma multi-résolution 
est suggéré et analysé. Il procède de façon « grossière à fine » et 
améliore successivement la mise en correspondance avec un 
niveau de représentation des données de plus en plus fin. On 
notera que ces deux solutions ont été développées dans l’optique 
d’éviter tout compromis avec la qualité de la mise en 
correspondance. 

Finalement, un système complet de digitalisation 3D d’objets 
est présenté. Il combine les données de plusieurs images de 
profondeur ou de maillages 3D pris sous différents points de vue 
afin de créer un modèle virtuel complet. En plus d’illustrer une 
utilisation pratique des techniques de mise en correspondance 
décrites précédemment, la mise au point de ce système a 
également permis le développement de nouveaux algorithmes pour 
l’acquisition de la couleur, la fusion de maillages ainsi que 
l’utilisation de textures. 
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Chapter 1 
Introduction 

1.1 Motivations 

The recent availability of cheap commercial range scanners, 
capable of easily measuring three-dimensional (3D) shapes, had a 
very beneficial effect on the development of 3D vision processing. 
Several types of range scanners are available on the market 
today, generally working on optical principles like stereo 
matching, active triangulation, time of flight or focus / defocus. 
Each single measurement is generally provided in a range image, 
where the value of each pixel represents the scanner-to-object 
distance. Range images are also often called 3D views since they 
represent a 3D image of an object or a scene seen from a certain 
point of view. 

Geometric matching, or shape registration, belongs to the 
main techniques used in 3D vision. It basically consists in finding 
the correct alignment between two or more sets of data, based on 
their intrinsic properties, and plays an important role in today’s 
computer vision. 

Several important applications use registration as a part of 
their working principle: 

• Modelling of 3D objects. Modern techniques for the modelling 
of 3D objects often rely on registration to match the set of 3D 
views that is needed to cover the whole surface of the object. 
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• Object recognition. In object recognition, a measured surface 
data can be registered with different existing models to recognize 
the object and its position. 

• Quality inspection. As a last example, in quality inspection, 
a measured surface data of an existing object can be registered 
and compared with its model to detect eventual anomalies. 

Generally, the following demands have to be observed in the 
previously cited applications: robustness of the matching, handling 
of free-form objects and speed of the process. 

1.2 Scope of the research 

One can distinguish two main types of geometric matching: the 
high-level one and the low-level one. High-level solutions basically 
rely on features extraction and matching. On the opposite, low-
level solutions apply matching directly on data primitives, like 
points or triangles. The later type of matching has several 
advantages compared to high-level matching, especially when 
dealing with free-form objects, because segmentation and features 
extraction can be very unreliable in this case. 

The iterative closest point (ICP) algorithm figures among the 
principal and widely used low-level registration methods. If the 
original algorithm doesn’t fit all of the applications and their 
demands, as described in paragraph 1.1, several variations that 
do fit them were since then proposed. 

Starting from an initial rough alignment of the data, the ICP 
processes iteratively. With each iteration, it first creates closest 
point correspondences between two sets of points (or more 
generally geometric data) and then minimizes the average 
distance of the previously found correspondences by a rigid 
transformation – i.e. a translation and a rotation. 

The main practical difficulty of the ICP algorithm is that it 
requires heavy computations. When working with clouds of points 
or triangulated meshes, the complexity of the original algorithm 
is O(MN), where M and N represent the number of points of the 
clouds to be matched. Consequently, matching high-resolution 
shapes takes a lot of time, even on current computers, and there 
is a need for ways to reduce the ICP computation time. 

The research presented in this report mainly addresses the 
acceleration of the ICP algorithm. Existing methods are presented 
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and compared and new methods are proposed and analysed. 
Besides the speeding up of the ICP, special care is given to 
preserving the quality of the matching. Finally, a complete object 
digitising system has been developed during the course of the 
research and is described at the end of this report. The main 
contributions of this work are presented into more details in the 
next section. 

1.3 Main contributions 

The main contributions of the Ph.D. work presented in this 
report are: 

The neighbour search algorithm 

A novel heuristic algorithm for fast closest point search applied 
to the ICP has been proposed, developed and tested. It is 
presented in Chapter 4. It consists of a heuristic that uses 
neighbourhood relationships to obtain a first approximation of the 
closest points and refines the results by a local search. 
Researches have been mainly conducted with range images, but 
the neighbour search can be applied to clouds of points or 
triangle meshes as well. 

The multiresolution scheme ICP 

A multiresolution scheme applied to the ICP algorithm has been 
proposed and analysed. The combination of this multiresolution 
approach and the neighbour search algorithm has been taken into 
account to obtain a very fast and robust ICP algorithm that can 
be found in Chapter 5. 

A complete digitising system 

During the course of the research, a complete digitising system 
has been built and is presented in Chapter 6. It consists of two 
structured light range finders (which differ mainly by the size of 
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their scan area and their resolution) and a workstation onto 
which an experimental digitising program has been developed. 
Most aspects of object digitising have been analysed and new 
algorithms for colour digitising, mesh fusion and texture handling 
have been proposed and implemented. 

1.4 Organization of the report 

The following chapters are organized as follows: 
The ICP algorithm, its situation among the other registration 

methods and its main variants are presented in Chapter 2. Many 
solutions for the acceleration of the ICP algorithm have been 
proposed. A description and comparison of most of them are 
presented in Chapter 3. 

The new closest point search method to speed up the ICP 
algorithm, the neighbour search, can be found in Chapter 4. The 
proposed multiresolution scheme ICP is presented in Chapter 5. 
A description of the main features of the built digitising system, 
as well as some results can be found in Chapter 6. 

Finally, the general conclusions of this work are presented in 
Chapter 7. 
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Chapter 2 
Surface Registration and 3D 
Points Matching 

This chapter situates the ICP algorithm among other existing 
matching algorithms. Then, it presents and analyses the different 
steps of the algorithm, as well as their main variants. 

2.1 An overview of matching methods 

Registration basically consists in finding the correct alignment 
between two or more sets of data. The registration is a 
straightforward process if the relative position is known for each 
view. Proposed solutions in this way include using orthogonal 
views [Chi88], placing the object onto a turntable [Bha84] 
[Hou95] or using specific hardware positioning systems to get the 
scanner position [3Dsca]. The main problem of these methods is 
that parts of the object are hard or impossible to measure, 
typically its "bottom" or some concave surfaces. 

If no a priori knowledge of the positioning is known, a 
common approach for shape registration is to use techniques 
based on the intrinsic properties of datasets, or geometric 
matching. One can distinguish two main types of geometric 
matching: high-level ones and low-level ones. High-level solutions 
basically rely on features extraction and matching - see [Ste92] 

 5



Fast Geometric Matching for Surface Registration 

or [Chu96] for examples. On the opposite, low-level solutions 
apply matching directly on data, like points or triangles [Bes92] 
[Che92]. The later type of matching has several advantages 
compared to high-level matching, especially when dealing with 
free-form objects, because segmentation and features extraction 
can be very unreliable in this case [Kam89]. 

Among the existing low-level solutions, Potmesil [Pot83] 
proposed to use a heuristic search in the whole transformation 
parameter space and Munch [Mun93] tried to maximize the 
correlation between the datasets in order to match them. 
Unfortunately, these methods are not suitable for dense 3D data, 
because of their very high computational costs. 

Another approach to solve low-level matching is to minimize 
the least square distances between pairs of corresponding points 
found in the datasets to be matched, or geometric point 
matching. The next section details the geometric point matching 
problem and the existing solutions. 

2.2 Geometric point matching 

As said above, the geometric point matching basically consists in 
minimizing the least square distances between pairs of 
corresponding points in the datasets to be matched. It can be 
defined as follows: 

Given two datasets P and X and a set of points of P which 
have been paired with a set of corresponding points on X, 
denoted respectively by {pi} and {yi}. Find the rigid 
transformation, defined by the rotation R and the translation t, 
which minimizes the following mean-squares objective function 

( ) ( ) ( ) ( )∑∑
==

−+=−+=
N

i
ii

N

i
ii c

NN
e

1

2

1

2 11
, ptRpytRptR  (2.1) 

where the function c associates every point {pi} with a 
corresponding point of X 

{ } ( ) XcPXPc iiii ∈=∈∈∀→ pypp  ,:  (2.2) 

and N is the number of pairs. 
Faugeras [Fau86] was among the first to make research in 

the 3D free-form shape matching and proposed a robust solution 
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to minimizing (2.1) in 1986 already. A presentation and 
discussion of existing solutions can be found in 2.6. 

The main limitation of Faugeras’s work is that it relied on 
the existence of large planar patches on the considered data to 
establish correspondences. This illustrates the difficulty to find a 
direct solution for the geometric point-matching problem, mainly 
because the correspondence function c is generally unknown. 

2.2.1 Iterative geometric matching 

In 1992, several authors [Bes92] [Che92] [Men92] [Cha92] came 
up with new algorithms to solve the geometric point-matching 
problem that exploit very similar techniques. The main idea of 
these algorithms is the following. Given that the two datasets to 
be matched are roughly aligned, a point of the first dataset is 
close to its corresponding point in the second dataset. Thus, the 
transformation that brings the two sets closer can be found by 
matching points of the first dataset with their closest counterpart 
in the second dataset. Then, one can refine the resulting 
transformation by applying this procedure iteratively. 

Consequently, the mean-squares objective function of equation 
(2.1) must be solved at each iteration k and becomes 

( ) ( )( ) ( )∑
=

−++=
N

i
ikikkk c

N
e

1

21
, pttRpRtR  (2.3) 

The global transformation (R, t) is incrementally updated as 
follows: R = RRk and t = t + tk. Finally, the correspondence 
function c (2.2) is now defined by 

( ) ( )( )xtRpxp
x

,min +=
∈ iXi dc  (2.4) 

The methods described above differ mainly in how they establish 
point correspondences. Besl [Bes92] uses the Euclidean distance 
between two point sets to compute closest points. Chen [Che92] 
calculates the closest point for a point from one surface by 
intersecting its surface normal vector (or simply normal) with the 
second surface. Menq [Men92] finds closest points between a 
point set and a set of parametric surface patches by solving non-
linear equations. Finally, Champleboux [Cha92] converts a point 
set into an octree-spline and computes Euclidean distances. 
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2.2.2 Rough matching estimate 

As said above, iterative geometric matching algorithms converge 
to a local minimum and need an initial rough matching to 
converge correctly. The problem of finding this initial alignment 
can be solved by many different methods. Some of them have 
already been exposed in 2.1, like high-level feature matching 
[Ste92] or using hardware positioning systems [3Dsca]. Methods 
proposed in the last years include interactive pose estimation, see 
6.3.1, alignment of major axes of datasets [Dor96a] [Dor97], 
matching oriented points (spin-image) [Joh97a], exhaustive search 
of corresponding triangulation [Che98], robust fuzzy clustering 
[Tar99] or alignment of laser dot projection [Ber00]. 

One of the interesting practical questions that arise at this 
point is “how far from the correct matching can the initial rough 
matching be so that the algorithm still converges correctly?” Part 
of the answer to this question can be found in section 2.8, 
“Matching quality comparison, SIC ranges”. 

2.3 The iterative closest point (ICP) algorithm 

Besl’s iterative closest point or ICP [Bes92] algorithm has been 
chosen for this work. This choice is mainly motivated by the fact 
that it is a very widely and successfully used matching 
algorithm. 

The ICP algorithm can register several types of geometric 
data like point sets, triangle sets, implicit surfaces or parametric 
surfaces. However, it establishes point-to-point correspondence 
using Euclidean distance, so the data may need decomposition 
into point sets. 

2.3.1 ICP algorithm statement 

The iterative closest point algorithm can be stated as follows: 

• input: 2 point sets, P = {pi} with Np points (data) 
and X = {xi} with Nx points (model) 

• output: A transformation (R, t) that registers P and 
X 
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• initialisation: k = 0, P0 = P, R0=I and t0=(0,0,0) 

• iteration k: 

1. Compute the closest points: 

 Use the squared Euclidean distance 

( ) 2
, xpxp −=d  (2.5) 

 to compute the set of Np closest points, Yk = {yi,k}, of 
Pk = {pi,k} defined as 

( ) ( )xpxpy
x

,min ,,, kiXkiki dc
∈

==  (2.6) 

2. Compute the registration: 

 Define the mean squared error of the couplings {pi,0, yi,k} as a 
function of Rk and tk. 

( ) ( )∑
=

−+=
pN

1

2

,0,
pN

1
,

i
kikikkke ytpRtR  (2.7) 

and compute the rigid transformation (Rk, tk) such as 

( )kkk ee
kk

tR
tR

,min
,

=  (2.8) 

3. Apply the registration: 

Apply the best rigid transformation to obtain the set 
Pk+1 = {pi,k+1} defined as 

kikki tpRp +=+ 0,1,  (2.9) 

4. Iteration termination 

 Stop when the maximum number of iterations or a defined 
criterion is reached (see 2.7). Set R = Rk and t = tk 

Figure 2.1 presents the ICP algorithm principle as well as a 
small example. 
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closest point
computation

couplings error
minimization

termination
criterion

X P0 X Pk X PN

(Rk, tk)

(R, t)

 

Figure 2.1: ICP algorithm principle 

2.3.2 Convergence theorem 

The following convergence theorem can be stated: The ICP 
algorithm presented above always converges monotonically to a 
local minimum. A proof of this theorem can be found below. 

At any given iteration k, the mean squared distance, dk, 
between Pk and Yk is defined by 

∑
=

−=
pN

1

2

,,
pN

1

i
kikikd yp  (2.10) 

After its minimization, the mean squared error of the couplings 
is given by 

( ) ∑∑
=

+
=

−=−+=
pp N

1

2

,1,
p

N

1

2

,0,
p N

1
N
1

i
kiki

i
kikikke ypytpR  (2.11) 

By definition, it is always the case that . If  was 
true, it would mean that the identity transformation on the point 
set would yield a smaller mean squared error than the given 
(R

kk de ≤ kk de >

k, tk), which isn’t possible. 
At iteration k+1, a new closest points search of Pk+1 is done 

and a set Yk+1 obtained. It is straightforward that 
2

,1,

2

1,1, kikikiki ypyp −≤− +++  for each i = 1, Np (2.12) 

simply because yi,k+1 is the closest point of pi,k+1 by definition and, 
consequently, that . Finally, one can state that kk ed ≤+1 ke≤0  
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since mean square errors cannot be negative. Therefore, the 
following inequality can be stated 

kkkk dede ≤≤≤≤ ++ 110  for all k (2.13) 

This proves that the error sequence is non-increasing and 
bounded below. Consequently, the ICP algorithm must converge 
monotonically to a minimum. Q.E.D. 

2.3.3 Discussion 

The basic ICP algorithm has two main disadvantages: poor 
robustness to outliers and speed. Specifically, it is very sensible 
to noisy data and hidden geometry, and has a high computation 
cost, especially its closest points search step. The next paragraphs 
of this chapter present the different steps of the algorithm, as 
well as the main variants proposed to improve its robustness. A 
description and comparison of the main existing solutions to 
speed up the ICP can be found in Chapter 3. 

Variant names 

Most variants of the ICP don’t rely on all closest points anymore, 
which leads some authors to propose other appellations. For 
example, Zhang [Zha94] called his variation “Iterative Pseudo 
Point Matching” algorithm or Rusinkiewicz [Rus01] proposed 
“Iterative Corresponding Point” as a better expansion for the 
abbreviation of ICP. This being noted, and for clarity, we will 
keep the denomination ICP for all variations of the original 
algorithm, like it is generally done in literature. 

Global registration 

Basically, the ICP algorithm registers two point sets. If more 
than 2 datasets need to be registered together, one speaks of 
global registration. Object modelling from range views is a typical 
example of applications that require registering more than two 
datasets. A straightforward solution to this problem is to register 
views sequentially, adding and registering views one after 
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another. A problem of this method is that a propagation and 
accumulation of the registration errors can occur. Several smarter 
solutions for global registration have been proposed. We won’t 
detail them here but some solutions based on ICP can be found 
in [Ber96] [Sto96a] [Ben97] [Pul99] [Ber00]. 

Non-rigid registration 

In this work, we only consider rigid registration, i.e., the 
considered transformations are exclusively rotations and 
translations. However, in some cases, the datasets could be a 
generic deformable shape model to be registered with a specific 
shape data like, for example, an organ in a medical application. 
Then, we speak about non-rigid registration. A typical adaptation 
of the ICP algorithm for non-rigid registration can be found in 
[Fel97]. 

2.4 Closest point computation 

The ICP algorithm assumes that a good approximation of 
corresponding points is their closest points. The better the 
calculated closest points reflect the real correspondences, the 
faster the ICP algorithm will converge. Furthermore, the 
Euclidean distance is sometimes not sufficient to establish good 
enough correspondences and to obtain a successful convergence of 
the ICP algorithm. 

Additional features, such as colour, can often be available 
along with 3D data. Furthermore, extra geometric features like 
surface normal or curvature can be estimated easily in range 
images or triangle meshes. This section presents alternative 
distance computations that consider such additional features in 
order to better couple the different points and increase the 
robustness of the algorithm. We can note however that all the 
methods presented below are still based on the “classic” 
Euclidean distance since the ICP algorithm principle is based on 
it. 
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2.4.1 Point-to-surface matching 

So far, we considered datasets P and X where surfaces are 
represented by sets of points. Basically, the denser the sampling 
of the data, the better the surfaces are represented and the 
smaller the matching error is. Given that the datasets are 
described by oriented points (point p and associated surface 
normal np) or triangulated point sets, a point-to-surface distance 
can be used to improve the matching error introduced by the 
discreetization of the data. 

 • Schütz uses the point-to-triangle distance [Sch98b]. A method 
based on the k-D tree (see section 3.4.3) is used to accelerate 
the calculation of the distance from a point to a triangle 
mesh. 

 • Chen [Che92] defines the point-to-plane distance dSi between 
the points pi of the first surface and the plane Si containing 
their coupled point qi and oriented perpendicularly to the 
normal of their coupled point nqi (see Figure 2.2). 

pi

yi

Si

X

P

npi

dSi

qi

nqi

 

Figure 2.2: Point-to-plane vs. point-to-point metric 

A difference between the point-to-point and the point-to-plane 
matching is that the minimization solutions are not the same 
(§2.6) and that there exists no closed-form solution for the 
latter. Consequently, a generic non-linear least-squares 
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technique (typically the Levenberg-Marquardt algorithm 
[Mar63]) is applied to find the best rigid transformation. 

Practically, the point-to-plane minimization lowers the number of 
iterations needed for convergence versus a classis ICP using 
Euclidean distances. Some recent discussions on point-to-point 
versus point-to-plane matching can be found in [Pul99] or 
[God01]. Basically, point-to-plane matching converges faster than 
point-to-point matching but the alternative feature matching 
found in the rest of this chapter can’t be used with it and it is 
less robust in some situations. 

2.4.2 Colour matching 

The shape-matching problem can be intrinsically ambiguous. It is 
the case when the surfaces, represented by point sets, lack 
geometric “features”, like flat surfaces, or when the surfaces come 
from objects that possess one or more axis of symmetry. However, 
if intensity or colour data are available, they can be used to 
improve the matching (Figure 2.3). We can distinguish two 
different uses of colour or intensity to improve matching: 

X

P

X

P

traditional ICP

color driven ICP

 

Figure 2.3: Influence of colour or intensity on matching 

 • Use the closest compatible point, i.e., first build a subset of 
the closest points that have a colour distance below a certain 
threshold, then find the closest point (using geometric 
distance) among these “compatible” candidates [God94]. 
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 • Use the colour ICP, where the colour information is added 
directly in the distance computation [Joh97b]. If the colour 
components are defined in a vector c = (r,g,b)1, the square 
distance (2.5) can be written 
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



−Γ+−Γ+−Γ

+−+−+−
=
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(2.14) 

 where ( 321 ,, )ΓΓΓ=Γ  are the scale factors that weight the 

importance of colours against shape. The main problem with 
this method is to define the scale factors. A smart solution is 
found in 2.5.1. 

2.4.3 Orientation matching 

Some local geometric features like normal vectors (Figure 2.4) or 
curvature can also be used to improve the coupling and, more 
generally, the registration. Solutions to using geometric features 
include the following: 

 • Chen [Che92] calculates the closest point qi for a point pi 
from one surface by intersecting its surface normal npi with 
the second surface (see Figure 2.2), using an iterative 
algorithm that needs an approximation of the closest point. 
Chen used a simple orthographic projection along the z axis. 
A more subtle solution is presented in 3.4.2. 

 • Use the closest compatible point presented above but create a 
subset of “compatible” candidates based on local curvatures 
[God95] or on the normals [Pul99]. 

 • Add the normals to the distance computation in the same 
manner presented for colour in (2.14), swapping c = (r,g,b) for 
the normal vectors n = (u,v,w) [Fel94]. 

                      
1 The red green blue space is used as an example but any other colour space could be 

used. 
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 • Brett [Bre99] uses the normals as a weighting of the 
Euclidean distance, replacing the squared distance (2.5) by: 

( ) 22
, xp

nn
xp −

⋅
=

xp

d
 (2.15) 

X

P

traditional ICP

orientation driven ICP

X

P  

Figure 2.4: Influence of orientation on matching 

2.4.4 Multi-feature matching 

Some existing solutions combine several features with the 
geometric distance. 

 • Godin [God01] recently presented a solution based on the 
closest compatible point principle using multiple features. It 
also includes a pseudo-random sampling selection that chooses 
points with “interesting” alternative features. These features 
can be based on colour or geometry, but only quantities 
independent of the coordinate system, like curvatures. 

 • Schütz [Sch98c] proposed a single distance definition that 
combines surface geometry, normal and colour. Consequently, 
the feature vectors associated with the data can contain up to 
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9 components and the distance is the weighted sum of the 
squared distances of the different features: 
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where cng ααα  and ,  are the scale factors that weight the 
different features. A proposed solution for the selection of the 
weights is found in 2.5.1. Schütz [Sch98c] showed that using 
this distance can greatly increase the quality of the matching 
(§2.8) of the ICP. 

2.4.5 Influence on the convergence 

The convergence theorem of section 2.3.2 isn’t always valid 
anymore when using alternate distance for dk computation. 
Consequently, the monotonous convergence of the ICP algorithm 
can’t be proven anymore in some cases. 

When features independent of the coordinate system, like 
curvatures or colours, are used in the distance dk computation 
(2.10), the inequalities  and  remain true and the 
theorem is still valid. Since the features are not affected by the 
calculated rigid transformation (R, t) there is no need to include 
them in the matching error minimization indeed. This allows the 
use of the closed-form solution based on quaternions (section 2.6). 

kk de ≤ kk ed ≤+1

On the opposite, surface normals are affected by the rigid 
transformation. Therefore, and if the error minimization ek 
remains only based on the geometric distance (2.11), the 
inequality  and, consequently, the convergence theorem, 
aren’t necessarily true anymore. However, results from the 
literature [Sch98c] and from our own experiments showed that 
practically, the behavior of the convergence is still nearly 
monotonous. 

kk de ≤

A solution to insure the monotonous convergence again 
consists in including the normals in the matching error 
minimization ek. Unluckily, no closed-form exists anymore in this 
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case and a non-linear least-square method must be used to 
minimize ek [Cha92] [Fel94], which is generally slower [Aru87]. 

2.5 Weighting the couplings 

As said in 2.3, the basic ICP algorithm is sensible to noisy data 
and hidden geometry, e.g. outliers. Also, the algorithm was 
originally intended for object recognition and, thus, matches a P 
dataset that is a subset of X. This is not the case in object 
modelling or augmented reality [Sch97a], for example, where P 
and X generally only share a part of their respective geometry 
(see 6.3 and Figure 2.5). More generally, a problem occurs when 
the surface defined by point set P is not totally included in set X 
because some points of P don’t have a correspondent in X and 
using a closest point approximation yields errors. 

A solution to these problems consists in qualifying the closest 
point pairs by assigning weights to the couplings. In such case, 
the mean squared error of the couplings (2.7), becomes 

( ) ( )∑
=

−+=
pN

1

2

,0,

1
,

i
kikikikk w

W
e ytpRtR  (2.17) 

and a new step is added to the algorithm between step 1 and 2 
to define the weights wi. Fortunately, it doesn’t change the way 
the minimization is performed (see 2.6.5). 

object recognition object modeling
quality inspection
augmented reality

X

P

X

P X

P

P: object view

X: object model

P: object view

X: object view

P: scene view

X: object model  

Figure 2.5: Different surface dispositions for the closest point search 
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We can recognize two distinct cases of weighting strategies. The 
first one consists in the elimination of bad couplings or binary 
weighting, where wi can only take values of 0 or 1. The second 
case is the general case where weights can take any values. 

2.5.1 Binary weighting 

The main purpose of the elimination of couplings is to get rid of 
outliers, as explained above. Different strategies exist: 

 • Reject a coupling when its distance is bigger than a fixed 
threshold. τ typically depending on the resolution of the data. 

( )


 <

=
else0

,1 τii
i

d
w

yp
 (2.18) 

 This method can easily be adapted to the multi-feature 
matching distance shown in equation (2.16) [Sch98b]. In this 
case, a threshold needs to be defined for each used feature. 
The normal threshold τn is derived from the corresponding 
maximal angle difference of two normal vectors. The colour 
threshold τc is defined by the maximal Euclidean distance 
between the corresponding colour vectors. Then, one can set 
the scale factors equal to the defined thresholds 

ccnngg τατατα === and ,  (2.19) 

 and the weighting function (2.18) can be expressed by 

( )


 <

=
else0

3ˆ,ˆ1 ii
i

d
w

yp
 (2.20) 

 • Use an adaptive threshold depending on the mean µ and/or 
standard deviation σ of the distances. For example, Masuda 
[Mas96] used στ 5.2=  and Zhang [Zha94] proposed 

σµτ a+= , where the integer a depends on µ. 

 • Discard the couplings that are not compatible with 
neighbouring couplings [Dor96b]. Couplings are considered 
incompatible if the distance di between a point and his closest 
point differs more that a threshold from that of the 
neighbouring couplings dj. 
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 • Eliminate couplings possessing points on mesh borders 
[Tur94]. 

 • Eliminate the n% of couplings (typically 10%) that are farther 
apart [Pul99]. This method is a complement of the previous 
one and would be ineffective on its own. 

Generally speaking, the methods that use a distance threshold 
give good results with the registration of partially overlapping 
datasets. Adaptive thresholds have a little advantage over fixed 
ones when the initial rough matching isn’t very close to the final 
matching (see 6.3.2). The rejection of pairs possessing points on 
mesh borders is also used quite often as it avoids overlapping 
datasets to slip one over another [Tur94]. 

2.5.2 Other weighting methods 

Generally, the idea behind assigning different weights to each 
pairings is to try to give more importance to the “better 
couplings”. Proposed solutions to this problem include: 

 • Use the coupling distance d. Godin [God94] defined the 
weights as follows: 

( )
max

,
1

d
d

w ii
i

yp−=  (2.21) 

 where dmax is the biggest coupling distance. Another possibility 
is to use a function similar to the double threshold one (see 
section 3.2.3) with soft transitions from one class to another 
[Kre96]. 

 • Use the normals of the points. 

iiiw yp nn ⋅=  (2.22) 

 • Use the colour of the points [God94]. 

 • Use “uncertainty” of the measured points [Rus01]. A classic 
evaluation of the uncertainty of a measurement done with a 
range scanner consists in using the cosine of the angle  
between the view direction v and the surface normal n. 

Φ

Basically, results from the literature show that general weighting 
methods don’t have a big impact on the registration except in 
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some very specific cases. A beginning of explanation is that most 
of these weighting functions can be seen as “softer” - less 
effective - equivalents to solutions presented above in alternative 
distance computation (§2.4) and elimination of couplings (§2.5.1). 
Consequently, most ICP implementations rely on binary 
weightings only. 

2.5.3 Influence on the convergence 

Since the weights wi can vary at each iteration, the inequality 
 isn’t always true. Consequently, the monotonic 

convergence of the ICP algorithm can’t be proven anymore when 
using weights w

kk+1 ed ≤

i in the error minimization ek (2.17). 
However, Zhang showed that the algorithm is well-behaved 

when using the adaptive threshold method showed in section 
2.5.1. Furthermore, experimental results from the literature based 
on different weighing functions also show that the ICP algorithm 
converges successfully even if the weights change during the 
iterations [Zha94] [Sch98b] [Rus01]. 

2.6 Best transformation computation 

As stated in equations (2.7) and (2.8), the problem of computing 
the best transformation consists in minimizing the mean squared 
error of the couplings {pi,0, yi,k} as a function of Rk and tk. For 
the sake of simplicity, we will get rid of the iteration indexes k 
and we will minimize the sum of squared errors instead of their 
mean value (which produces exactly the same result). 

The function we now consider for minimization is 

( ) ( )∑
=

−+=
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i
iie

1

2
, ytRptR  (2.23) 

This problem could be solved by about any optimisation method, 
such as steepest descent for example, but it wouldn’t be very 
efficient. Fortunately, several closed-form solutions exist to find 
the values of R and t that minimize e. They include using 
quaternions [Fau86] [Hor87], singular value decomposition (SVD) 
[Aru87], or dual number quaternions [Wal91]. 
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Some evaluations and comparisons of them can be found in 
[Zha94] and [Egg97]. Basically, the conclusion of these works is 
that the different methods produce very similar results in term 
accuracy and stability. Speed isn’t really a concern either since 
all these methods are relatively fast compared to the global 
running time of the ICP algorithm. 

The quaternion method was chosen for this work and is 
summarized in the following sections. 

2.6.1 Simplification of the problem with centroids 

The main strategy to minimize e is to split equation (2.23) into 
simpler expressions and to try to decouple R and t. Expanding 
(2.23) we obtain: 
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The first and third term of this expression contain only R or t 
and can only be positive or null. The second term on the other 
hand is the only one that still contains both R and t. It means 
that this term needs to be eliminated to obtain an expression of 
e with decoupled R and t. To do so, the datasets pi and yi are 
referred to their centroids: 
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Equation (2.23) can then be rewritten as 
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and finally 
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We can expand this expression like we did in (2.24) except this 
time the mixed term is null because it basically sums up all the 
data points, which are referred to their centroids. 
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The second term can now be set to zero, which leads to the best 
translation vector: 

py Rµµt −=  (2.29) 

Finally, only one term that isn’t equal to zero remains. 
Consequently, the following equation has to be minimized to find 
the best rotation R. 

( ) ∑
=

′−′=
N

i
iie

1

2ypRR  (2.30) 

To summarize, one can see that the problem is now to find the 
best rotation R that minimizes (2.30). After that, finding the best 
translation is trivial following (2.29). 

2.6.2 Quaternions 

This section presents some definitions about quaternions and 
their properties, needed for the computation of the best rotation. 

Basically, a quaternion  is a complex number containing 
four elements of the real space , thus containing three 
imaginary components (i, j, k). It can be written as 

q&
R

... i,jkk,ji,kij-1,ii

withk  ji0

=−===

+++= zyx qqqqq&
 (2.31) 

A quaternion can also be represented as a vector with four 
components. The first one is a scalar while the remaining three 
correspond to an imaginary vector. It can be represented by 

( ) ( )qq ,,,, 00 qqqqq zyx ==&  (2.32) 

A data vector is basically represented by a purely imaginary 
quaternion: 

( )pp ,0)p,p,p,0( == zyx&  (2.33) 

One can define the conjugate of a quaternion as 

),( 0
* qq −= q&  (2.34) 
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The product of two quaternions is defined by 

( ) qrrqqrrqrq &&&& ≠×++⋅−= 0000 , rqrq  (2.35) 

and one will note that it is not symmetric. Next, one can 
associate an orthogonal matrix Q to a quaternion so that the 
quaternion product can be expressed as a product of that matrix 
with the other quaternion. If 
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then, the quaternion product can be expressed by 

  and * rQqrrQqrrQrq &&&&&&&&& T==≠=  (2.37) 

Rotations expressed by quaternions 

Let’s examine the following composite product 
*qpqp &&&& =′  (2.38) 

where  is a data vector in a quaternion form (2.33) and q  is a 
unit quaternion, where 

p& &

1=q& . It can be proved that this 
product represents a rotation of the data vector p . To do so, it 
is shown that the length of the data vector is not changed by 
this operation and that the dot and cross product are preserved 
[Hor87]. 

&

The properties of (2.37) are used to extract the rotation 
matrix defined by the quaternion : q&

( ) ( ) ( )pQQpQQqpQqpqp &&&&&&&& TT ====′ **  (2.39) 

The matrix QQT  has the form 


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
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R0
0

QQ
1T  (2.40) 

where R is the 3x3 rotation matrix. It has the following value: 
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2.6.3 Finding the best rotation 

Now we can look back at the minimization function (2.30) and 
use the quaternions as defined in (2.39). 
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A development of  (not shown here) leads to ( )q&e
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Finally, the minimization function can be written 
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Matrix A can be expressed again with data p  and  i′ iy′
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where Smn are the sums of cross-correlations defined by 

( )zyxnmS
N

i
i,ni,mmn ,,, with yp

1

∈′⋅′= ∑
=

 (2.46) 

Applying the technique of Lagrange multipliers to (2.43), we have 
to solve 

( )[ ]2
1min find qqAq

q
&&&
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and do it by setting the partial derivatives of L to zero 
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Since the matrix A is symmetric, (2.48) becomes 

qqA && λ=  (2.49) 

which shows that q  is an eigenvector of matrix A. Putting 
together (2.44) and (2.49) we can write 

&

( ) λλλλ ===== 2

min qqqqqqAqq &&&&&&&& TTTe  (2.50) 

and conclude that the quaternion that minimizes e is the 
eigenvector of matrix A corresponding to the smallest eigenvalue. 

2.6.4 Summary of the quaternion method 

The quaternion method to solve the minimization of the coupling 
error can be summarized as follows: 

1. Refer data points to their centroid (2.25) 

2. Build matrix A (2.45) 

3. Find the smallest eigenvalue of A and its associated 
quaternion  q&

4. Get the best rotation matrix R(q ) (2.41) &

5. Get the best translation vector t (2.29) 
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2.6.5 Influence of weightings 

If weightings are used (see 2.5), the objective function (2.23) is 
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The method remains the same but the weights make their 
apparition in two different steps. First, the centroids of both 
point sets (2.25) is now defined by 
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Then, the matrix A (2.45) is 
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and the sums of cross-correlations Smn are now defined by 
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2.7 Iteration termination 

Using a fixed number of iteration isn’t really a suitable option 
when using the ICP algorithm, mainly because of its high 
computational cost. Different methods have been proposed to 
automatically stop the iteration of the algorithm. A short 
commented summary follows. 

 • The absolute error criterion 

The iteration stops when the mean square error of the 
couplings falls below a threshold, τ≤ke . The problem is that 
ek is very sensitive to noise and τ is hard to set because it 
depends a lot on the data P and X and their configuration: 
basically, if τ is set too large, the iteration may stop too 
early, when the data are not correctly aligned. On the other 
hand, if τ is too low, it is very possible that the error ek 
remains bigger even after complete convergence. 
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 • The error change criterion 

The iteration stops when the change in mean square error of 
the couplings falls below a threshold, τ≤−− kk ee 1  [Bes92]. 
This criterion is much less sensitive to noise and the 
threshold depends less on the data shape and configuration 
than in the absolute error case. It can be found in many 
implementations of the ICP. 

 • The pose change criterion 

The iteration stops when the change in the motion estimate 
falls below a threshold [Zha94]. The change in translation is 
defined as 1−−= kkk tttδ . The change in rotation is 
computed using the rotation axis representation r defined as 
follows: r=θ  and rrn = . The rotation parameters can 
be extracted from the quaternion representation  with q&

( ) ( )( )22 sin,cos θθ nq =&  (2.55) 

The iteration stops when 

rt rrrttt τδτδ ≤−=≤−= −− 11  and kkkk  (2.56) 

 • The complex error change criterion 

A new matching error ε is defined as the sum of the mean e 
and the deviation eσ  of the minimized squared error of the 
couplings (getting rid of the iteration index k for clarity): 
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where ( ) 2

iiie ytRp −+=  after the minimization of e. The 
error change criterion can then be applied to ε. 

τεεσε ≤−+= − kkekk k
e 1 when stop ,  (2.58) 

This error change criterion is mainly robust to bad couplings 
in object recognition [Sch98b]. 

 28



 Surface Registration and 3D Points Matching 

2.8 Matching quality comparison, SIC ranges 

Two measures can be considered to examine the quality of the 
matching of the ICP or one of its variants: the matching error 
and the domain of convergence. 

Some applications need a very precise matching while others 
are less dependent on it. To observe the matching error, the 
algorithm must converge and the resulting alignment has to be 
compared to a defined “correct” matching (see below). Practically, 
the transformations are compared and the results are given as a 
rotation error eϕ and a translation error et. 

As said before, the ICP algorithm needs a rough initial 
matching to converge correctly. To be efficient, some applications 
need to handle quite rough initial matching. It is the case for 
object recognition for example. The successful initial configuration 
(SIC) range provides a measure of how sensitive to the 
“roughness” of the initial matching an ICP variant and/or some 
data are. 

2.8.1 SIC range 

Examining the domain of convergence consists in finding the 
rough initial poses that lead to a successful matching. A 
successful initial configuration (SIC) is basically defined by a 
relative initial pose of the two datasets that leads to a successful 
matching. The initial configuration space possesses 6 dimensions 
(3 translation and 3 rotation parameters), so examining all of it 
isn’t conceivable, due to both heavy computations and difficulty to 
handle the results. 

We choose to use a dedicated setup, presented in [Hug97], to 
measure the range of successful convergence of two surfaces. The 
considered initial configurations are defined in a 3 dimensional 
space as follows: the SIC setup moves one surface (P) in several 
points on the circumsphere of the other one (X) (see Figure 2.6). 
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Figure 2.6: SIC range setup 

Each of these configurations can be expressed by a zenith angle 
φ and an azimuth angle θ. Furthermore, at each current position 
on the circumsphere, the surface is rotated around its normal 
axis with an angle ω. The initial position, φ = 0, is defined by the 
view axis of P. An initial configuration is thus defined by the 3 
angles (φ, θ, ω). 

2.8.2 SIC maps 

Registrations are performed for each initial configuration and the 
results are plotted in a SIC-map. Each point on the circumsphere 
is represented by a circle using the following polar coordinates 
(radius, angle) = (φ, θ). ω is represented by sectors in the circles. 
Figure 2.7 shows the different angles on the SIC-map. An initial 
configuration is considered successful when the resulting 
registration position is closer to the correct matching than a 
certain threshold, in both rotation and translation. Those are 
plotted as black sectors on the SIC-map. Consequently, black 
areas in a SIC-map represent the range of successful initial 
configurations. 
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Figure 2.7: SIC map model and three example configurations 
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Chapter 3 
Acceleration of the ICP Algorithm 

Many solutions for the acceleration of the ICP algorithm have 
been proposed. A description and comparison of most of them are 
presented in this chapter. 

3.1 Classification of acceleration methods 

The time complexity of the different steps of the ICP algorithm, 
in its basic form, is as follows. The first step, the closest points 
computation, has a complexity of O(NpNx). The next three steps, 
assigning weights, computing the registration and applying the 
registration, possess a complexity of O(Np). Consequently, the 
complexity of the ICP algorithm is O(NpNx). 

One of the main practical difficulties of the ICP algorithm is 
that it requires heavy computations. This is mainly due to closest 
points computation step, as its complexity is quadratic (O(NpNx)). 
Consequently, there is a need to accelerate the process, especially 
when working with large amounts of data. 

Several authors have proposed solutions to speed up the 
algorithm. Langis [Lan01] recently proposed a parallel 
implementation of the ICP. He showed that a nearly linear 
performance improvement with the number of processors can be 
obtained with up to 16 processors. Beside this hardware-
specialized implementation, one can separate the different 
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methods into three main classes: reduction of the number of 
iterations n, reduction of the number of data points Np and Nx 
and acceleration of the closest points computation. A review of 
the different methods existing for each class and their results is 
given in the next paragraphs. 

closest point
computation
O(NpNx)

couplings error
minimization

O(Np)

termination
criterion

n iterations

(R, t)Np

Nx

 

Figure 3.1: ICP principle 

3.2 Reducing the number of iterations n 

One of the possibilities to speed up the ICP algorithm consists in 
reducing the number of iterations needed for convergence. Of 
course, it means that an iteration stop criterion (§2.7) must be 
set instead of using a fixed number of iterations. 

Solutions that can reduce the number of iterations include 
extrapolating the motion parameters and using extra features or 
special weighting functions. These methods are developed in the 
rest of section 3.2. One can also note here that Rusinkiewicz 
actually tested and evaluated the influence of many existing 
variations of the ICP on the number of iterations [Rus01]. Most 
of them didn’t have much influence and, thus, are not cited in 
this section. 

3.2.1 Extrapolation of matching parameters 

A way to reduce the number of iterations is to extrapolate the 
matching parameters to estimate the minimum of the objective 
function. Besl proposed an “accelerated ICP” based on this 
principle [Bes92]. 
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The registration parameters q  (the relation between  and 
the rotation matrix R is found in 2.6) and t can be combined in 
a 7-dimensional global registration vector 

& q&

( ) ( )zyxzyxo tttqqqq ,,,,,,, == tqq &  (3.1) 

Let’s consider the vector representing the difference between two 
consecutive iterations k-1 and k 

1−−=∆ kkk qqq  (3.2) 

which defines a direction in the registration state space. The 
angle between the last two directions in the 7D space is 

1

1cos
−

−

∆∆
∆⋅∆=

kk

kk
k qq

qqθ  (3.3) 

An extrapolation of the objective function e in the registration 
state space can be executed if the last three registration vectors 

kq , 1−kq  and 2−kq  are well aligned, i.e., if 

δθθδθθ << −1and kk  (3.4) 

with δθ  being a sufficiently small angular threshold (δθ  = 10° 
typically). 
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Figure 3.2: Extrapolation of the registration parameters 
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For clarity, let’s write the associated mean square errors ek, ek-1 
and ek-2, and the associated approximate arc length 

1121  and ,0 −−−− +∆−=∆−== kkkkkk vvvv qq  (3.5) 

Now, we can extrapolate the objective function e using a linear 
approximation e1 and a parabolic interpolation e2 of the last three 
points we just defined (see Figure 3.2): 

( ) ( ) 22
2

22111  and cvbvavebvave ++=+=  (3.6) 

Using these two functions gives us a possible linear update v1, 
based on zero crossing of the line, and a possible parabolic 
update v2, based on the minimum point of the parabola: 
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A maximum allowable value vmax is then set to avoid extreme 
values (vmax = 25vk-1). The final update value v0 is chosen among 
those three possible values being the smallest positive one. 

( ) 0and,,min 0max210 >= vvvvv  (3.8) 

Finally, the updated registration vector is defined by 

k

k
kk v

q
q

qq
∆
∆+=′ 0  (3.9) 

Simon [Sim95] proposed to decouple rotation and translation in 
the accelerated ICP to reduce the number of iterations further 
more. 

One of the main problems of this method is that overshoot 
can happen, which would at best eliminate the beneficial effect of 
the method and which can be especially annoying if it causes the 
algorithm to converge to a wrong local minimum. Therefore, a 
test is necessary to ignore updated registration vectors that cause 
a mean square error worse than the original registration. 

A solution to reduce the chances of overshoot is to multiply 
the amount of extrapolation v0 by a dampening factor like 0.5 
[Rus01]. Of course this also reduces the benefits of the 
extrapolation. 

Practically, the accelerated ICP and its decoupled version 
reduce the number of iterations by factors of up to 3 and 4.5 
respectively. 
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3.2.2 Additional features 

Some of the methods to improve coupling with extra features, 
presented in 2.4, can have a significant action on the number of 
iterations. 

Figure 3.3 shows an example of matching of two coloured 
surfaces of a toy rabbit (result from [Sch98b]). The error e is 
plotted at each iteration for the multi-feature distance (2.16). One 
can basically see that using more features reduces the number of 
iterations needed for convergence. 
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Figure 3.3: Convergence of ICP using multiple features [Sch98b] 

Practically, the reduction of the number of iterations due to the 
use of extra features is of course very dependent on the data and 
features that are considered. Colours, for example, are only useful 
in certain cases. On the other hand, experiments showed that the 
normals have a very beneficial effect on the number of iterations 
in most cases. 

Figure 3.4 shows the convergence of the error e versus time. 
This permits to see that the gain in number of iterations is 
counterbalanced by the longer searches due to the use of the 
multi-feature distance (see §3.4.1). All in all, the use of extra 
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features doesn’t have much influence on the global matching time 
but mainly on the quality of the matching. 
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Figure 3.4: Convergence of ICP versus time using multiple features 
[Sch98b] 

3.2.3 Weighting the couplings 

Most weighting methods don’t have much influence on the 
number of iterations. However, the basic binary weighting 
function to eliminate outliers, found in (2.18), can be slightly 
modified to accelerate convergence: 

In this case, we use two distance thresholds and, thus, three 
different values for wi (0, 1 and 4 in this case) as shown in 
Figure 3.5 [Sch98b]. Instead of a single threshold separating 
inliers and outliers, this function omits outliers as well but also 
attributes a lower weight to points that possess a nearby closest 
point. This results in a faster convergence since inliers that are 
still farther apart get more influence and outliers do not disturb 
the matching error minimization. 
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Figure 3.5: Double threshold weight function for closest point couplings 
[Sch98b] 

Figure 3.6 shows the evolution of the matching error over 
several iterations for a typical ICP matching converging 
successfully. The double threshold weight function permits the 
reduction of the number of iterations needed to reach a minimum 
error by 50%. 
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Figure 3.6: Matching acceleration with weighted couplings [Sch98b] 
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3.3 Reducing the number of data points Ni 

Another good solution to speed up the ICP algorithm is to use 
subsets of the data P and, sometimes, X instead of the full 
datasets. Part of the solutions following this principle simply use 
a single subset of the data, called control points, through all 
iterations while others use a coarse to fine strategy. The closest 
compatible point principle exposed in 2.4 also reduces the number 
of points in X in its own way as discussed below. 

3.3.1 Closest compatible point 

The closest compatible points principle consists in first building a 
subset of the points of X that have a feature distance below a 
certain threshold, then finding the closest point (using geometric 
distance) among these “compatible” candidates. 

As long as the considered features are independent of the 
coordinate system, like curvature or colour [God94] [God01], the 
subsets of compatible candidates only need to be computed once. 
On the other hand, using normals is computationally expensive 
since the subsets need to be recomputed at each iteration. 

We can note that it is impossible to estimate the possible 
gain in speed because the size of the subsets depends a lot on 
the feature used and on the data. As long as the extra features 
aren’t very discriminating, there is a good chance that the 
subsets still contains a high proportion of the points of X. So 
generally, this method requires a big memory use and doesn’t 
have such a high potential for speeding up. An additional 
problem is that is that no further speeding up method can be 
easily applied to the closest points search (§3.4) since there are 
many different subsets of X. 

3.3.2 Control points 

Several authors proposed to only select a subset of points, called 
control points [Che92], instead of using full data. Generally, 
control points are selected as a subset of dataset P. On the other 
hand, the dataset X is kept at full resolution to still permit a 
precise matching between both sets. 
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The basic benefit of using control points regarding speed can 
be estimated easily. If Nc control points are selected in a dataset 
P that contains Np points, the computation of each ICP iteration 
is basically Np / Nc time faster since all steps of the algorithms 
are performed using only the Nc control points. 

Different strategies have been proposed to select the control 
points and are presented below. 

 • Perform a uniform subsampling of points in the range image. 

 • Use a random subset. Masuda [Mas96] suggested using new 
random subsets at each iteration. 

 • Select points with help from additional features. For example, 
keep points with high image gradients in the intensity image 
[Wei97] or select points having a distribution of the normals 
as large as possible [Rus01]. Finally, Godin proposed 
generalization of the use of additional features (called 
attributes in this work) to orient a random sampling [God01]. 

 • Use a mesh decimation algorithm that keeps significant 
feature (high curvature) on triangle meshes [Bre99]. 

 • Keep points sitting in smooth areas [Che92]. This argument is 
especially valid when using point-to-plane distances because 
normals and line-plane intersections are more reliable in that 
case. 

The main problem with this solution is that the resulting 
registration can lack precision because the whole matching is 
done using only a part of the data (see 5.4.1). Solutions that try 
to select points “intelligently”, like using mesh decimation, may 
have a positive effect on the result precision but they also have a 
fairly high computational cost. 

3.3.3 Coarse to fine strategy 

A coarse to fine strategy can easily be applied to the ICP 
algorithm. The main advantage of a coarse to fine strategy over 
choosing control points is that the final precision of the matching 
is expected to be the same as when using the full resolution all 
the way. 
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Proposed solutions execute the first iterations using a subset 
of X, like 1/4 of the points uniformly sampled [Tur94] or 1/5 
randomly chosen points [Zha94], and finish with fine matching 
using all the points. Zhang found an experimental gain in speed 
of about 2 to 4 using this method. 

In this case, the acceleration gain is greatly dependent on the 
number of iterations performed at the different resolutions. So 
far, few results have been published concerning coarse to fine 
strategies for the ICP. A generalized multiresolution scheme 
applied to the ICP and combined with fast closest points search 
is formulated and analysed in Chapter 5 of the present work. 

3.4 Speeding up the closest points computation 

As seen before, the closest points search step has a basic 
complexity of O(NpNx) and most computation time of the ICP 
algorithm is spent in it. To illustrate the problem, Table 3.1 
shows the percentage of computation time spent for closest points 
search for different number of points, as provided by a practical 
experiment. 

Number of 
points N 1000 4000 16000 64000 

Closest points 
search comp. % 93.0% 97.2% 98.2% 98.8% 

Table 3.1: Percentage of computation time spent for closest points search 

The acceleration of the closest points search can be done using 
either search structures, as shown in the next section, or using 
projection methods, which are very specific to the ICP, as shown 
in section 3.4.2. The section 3.4.3 presents the k-D tree search 
into more details, as it is the reference fast closest points search 
method chosen in this work. 

3.4.1 Search structures 

There exist different structures that permit to find the closest 
point in a dataset without browsing the full set and, thus, that 
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speed up the process. The main methods using a search structure 
and proposed to speed up the closest point computations of the 
ICP algorithm are summarized below. 

 • The multidimensional binary search tree, or k-D tree uses a 
divide-and-conquer strategy to speed up the closest points 
computation [Bes92] [Zha94]. This method is the classical fast 
closest point search method used to speed up the ICP and we 
consider it as our reference fast ICP solution in this work. 
Consequently, it is discussed and presented into more detail 
in section 3.4.3. 

 • The Elias method [Gre00] divides the space into congruent 
sub-regions called bins. Each bin is assigned a list of the 
points of X that it contains. The closest point of the 
considered point p is first searched in the bin it belongs to. 
If the distance to the found closest point is bigger than the 
distance to any other bin or if the bin is empty, then the 
search is performed in these bins until the distance to the 
closest point is smaller than the distance to any unexplored 
bins. 

 The exact complexity of the method can’t be defined but if all 
the bins contain at least a point, the maximum number of 
adjacent bins that may need to be examined is 3k-2. This 
number basically increases if some of the bins are empty. 
Thus, this method is not suited for multi-feature data since 
the search time rises up quickly in this case. 

 • The distance field method [Tub02] also divides the space into 
congruent sub-regions called voxels (from volume cells). The 
closest point correspondences between the considered point set 
X and the voxel centers are stored, which allows direct access 
to the closest points. 

 One of the biggest drawbacks of this method is that there is 
a big tradeoff between memory requirements and resolution, 
and consequently quality of the matching. Furthermore, this 
method is not suited for multi-feature (high dimensional) data 
since the memory requirement of the distance field explodes 
in this case. Consequently, it has been rarely considered in 
the context of the ICP until recently and for specific 
applications (see [Tub02]). 

 43



Fast Geometric Matching for Surface Registration 

 • The Spherical Triangle Constraint Nearest Neighbour 
(STCNN) method has been developed specifically for the 
speedup of the ICP [Gre01]. The idea is to keep a list of the 
points situated in the ε-neighbourhood – all points closer than 
ε – of each point of X, sorted by distance. At runtime, the 
correspondence of the previous iteration is used as a first 
approximation of the closest point. A first constraint (the 
spherical one) permits to tell if the real closest point falls in 
within the ε-neighbourhood of the estimate. If it is the case, 
the triangle inequality is used to efficiently prune the points 
of the ε-neighbourhood. Else a classical search method (like 
the ones presented above) is used. 

There isn’t much feedback since the method is new, but some 
conclusions can be taken from Greenspan paper. The good 
side is that, globally, the method is a bit faster than the k-D 
tree and Elias methods. Furthermore, and in the best case, 
less than 2 distance computations are needed on average. On 
the other hand, the method seems to have several downsides. 
One of them is that it requires an important storage size and 
the pre-processing is complicated (finding all the points within 
a distance threshold and sorting them, for each points of X). 
Another downside is common to most of the structure search 
methods and is explained below. 

Most of these search structure methods are effective if the data 
cover the whole parameter space. Consequently, they suffer from 
the fact that the datasets considered in the ICP are surfaces, and 
that a lot of the space is “free” of data. First of all, most 
methods are ineffective for points of P that aren’t close to the set 
X. This is the case for the first iterations when datasets are only 
roughly aligned and also when they only partially overlap. The 
problem is detailed for the k-D tree in 3.4.3. Since a lot of the 
voxels or bins are empty, it also leads to a very inefficient 
memory use in the distance field method. 

3.4.2 Projection methods 

The goal of projection methods is to speed up the closest points 
search by projecting points into one or more planes, reducing the 
problem to a 2D search. Unlike the methods presented above, 
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these solutions are typically adapted to the ICP algorithm and 
use the fact that data are usually representing surfaces to their 
advantage. It should be noted here that due to their nature, they 
generally define approximations of the closest points instead of 
real ones. Of course the approximations can well be the real 
closest points in some cases. 

Two main solutions based on projection methods have been 
proposed in the literature. 

 • The reverse calibration [Bla95] consists in projecting the 
points of one dataset into the range image of the second one, 
in the direction of the range camera. Practically, one must 
invert the scanner calibration parameters so that one gets the 
coordinates (u, v) in range image X of a point (x, y, z) of P, 
expressed in dataset X reference frame. 

Weik proposed to refine the search in the range image by 
using the gradient of the corresponding intensity image 
[Wei97]. Neugebauer used this method to obtain the first 
approximation of the closest point needed for point-to-plane 
matching (§2.4.1) [Neu97]. Of course, this method relies on 
working with range images and, more importantly, on 
knowing the calibration parameters of the 3D scanner, which 
can be restrictive. 

 • Benjemaa proposed to use one [Ben95] or several [Ben96] 
reference projecting planes called Z-buffers. In case a single Z-
buffer is used, both point sets are projected on the same 
plane and local searches -in an n x n window- are performed 
to refine the correspondences. The multi-Z-buffers solution 
uses the normal information to assign a point to a plane (Z-
buffer). The normal space is basically divided in 216 parts, 
each of those defining a plane perpendicular to its mean 
normal (the associated Z-buffer). Then, points are projected in 
their respective Z-buffers and the local searches are performed 
in each Z-buffer. 
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Figure 3.7: Projection method principle 

 One of the problem of this method is that the points of P 
need to be projected in their respective Z-buffer at each 
iteration of the ICP, which isn’t very optimal computationally 
speaking. Another drawback, common to all projection 
methods, is that a very good initial matching is required for 
correct convergence. Practically, the size of the n x n window 
is chosen to be of the same order as the error of the initial 
matching. 

Most of these methods possess a complexity of O(Np), which is 
much better than the original O(NpNx) one and often permits a 
very good speeding up of the ICP algorithm. On the other hand 
projection methods rely on a very good initial approximation of 
the matching and can’t be adapted very well to using extra 
matching features, i.e., the resulting ICP is less robust [Rus01]. 
Consequently, they imply an important tradeoff between speedup 
and quality of matching (as defined in 2.8). 

3.4.3 k-D tree search 

Bentley introduced the general idea of the k-D tree back in 1975 
[Ben75]. The main idea of the method is to generalize bisection 
in one dimension to the n-dimensional case [Pre86]. The main 
advantage of the k-D tree is that it permits to use multi-feature 
data (defined in equation (2.16)) and to compute the real closest 
point, unlike projection methods. Therefore, it doesn’t imply a 
tradeoff between the speedup of the ICP and the quality of the 
matching. 
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Building the k-D tree 

An example of the construction of a k-D tree is shown in Figure 
3.8 for a 2D case (xy-plane, k=2). A starting point of the set is 
first chosen, as well as one of the feature space dimensions, t, 
named key. Both items are assigned to the first node of the tree 
called root node. In our example, the root node contains point p5 
and key x. Then, the points are subdivided by a line of equation 
x = x(p5). Every point that possesses a smaller x coordinate than 
p5 will be found on the left side of the root node (p1, p2, p3 and 
p4), the other points (p6, p7 and p8) being on the right side. One 
of the points of the left side and a key are then chosen and 
assigned to the left son of the root. In our case, it is point p2 
and key y. Once again, the remaining points are subdivided, this 
time by the line y = y(p2). 

The construction continues like this until all points have been 
assigned to a node of the tree. If a subdivision implies that no 
points are left on a side of a node, then an empty node, called a 
leaf, is placed. In our example, a square and a letter represent 
the leaves of the tree to see the relation between them and the 
empty rectangles they define. 
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Figure 3.8: Example of a 2-D tree construction 

The generalization to k-dimensions is straightforward. The cutting 
lines in 2D are replaced by hyperplanes in k-dimensions, keeping 
the same type of equation (t = t(pi)). The complexity for building 
the tree is O(NlogN) and it uses a storage θ(N). 
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Closest point search in the k-D tree 

Different algorithms to search closest point using a k-D tree have 
been proposed by Friedman [Fri77] and Zhang [Zha94]. Both are 
recursive and their main idea is to perform the search in a k-
dimensional sphere centred on the test point p for which the 
closest point is searched. Furthermore, the radius of the sphere is 
reduced during the search, which permits the search to be more 
efficient. We used Zhang’s search algorithm in this work since it 
is simpler and easier to understand than Friedman’s one. 

The search algorithm works as follows: 
First, the sphere radius D is set to a maximum value Dmax 

and the current node ν is the root of the k-D tree T. Then, if 
the sphere overlaps the hyperplane defined by the key t(ν) of the 
current node, the search algorithm is called recursively for both 
left and right sons. Otherwise, only the son lying on the side of 
the test point p needs to be searched. Furthermore, if the 
distance between p and the current node point x(ν) is smaller 
than D, D is reduced to this distance and the closest point y is 
set to x(ν). The recursive search stops if a node has no children. 
Finally, and unless the closest point was further than Dmax, y 
corresponds to the correct closest point and D is equal to the 
closest point distance. 

Formally, the search for the closest point to p is made by 
calling Search(root(T), p) of the following procedure: 

 

• input: a test point p, a k-D tree T of a point set 
X, a closest point y and a distance D = Dmax 

• output: the closest point y and the corresponding 
distance D 

• procedure  Search(ν,p) 

 if(ν == leaf) return; 

 if(¦p[t(ν)] - x(ν)[t(ν)]¦ < D) then 

  if(d(p, x(ν)) < D) then 

    y = x(ν), D = d(p, x(ν)); 

 if(p[t(ν)] – D < x(ν)[t(ν)]) then 

    Search(leftson(ν),p); 
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 if(p[t(ν)] + D > x(ν)[t(ν)]) then 

    Search(rightson(ν),p); 
 

Optimization of the k-D trees 

To be of maximum efficiency, the tree needs to be as balanced as 
possible, i.e., the branches have to have similar lengths. The 
selection of the point and key assigned to each node has an 
influence on the shape of the k-D tree. Points can be selected 
randomly, but this could result in an unbalanced tree, especially 
in the ICP case, because data generally represent only a part of 
the space (surfaces). Bentley proposed to use the median value 
for the selected key [Ben75], which effectively permits to create a 
balanced tree of with branches of average length logNx. 

Usually, the keys are chosen in a cyclic order, a key being 
assigned to each level in the tree. It is the case in the example 
of Figure 3.8. Friedman proposed to use, at every non-terminal 
node, the key with the largest spread in values [Fri77]. The 
advantage of doing so is that the partitioning is more regular 
and the probability of the sphere overlapping the hyperplanes is 
least (averaged over all the query locations). 

Another optimisation proposed by Friedman is to keep small 
subsets of data in the terminal nodes, called buckets (instead of 
leaves). Then, when a bucket is reached in the search, distances 
are computed with each points in the bucket. If one examines 
only the number of distance computations, then the tree is 
optimal for buckets containing a single point. On the other hand, 
it generally involves more backtracking with the recursive search. 
A value of around 10 to 20 points per bucket was shown to be 
optimal regarding the time of execution. 

Performance and limitations related to the ICP 

The best case complexity of the closest point search in a k-D tree 
is O(logNx), where Nx is the number of point in X [Ben75] 
[Fri77]. The number of distance computations due to backtracking 
is expected to be 2k and, thus, constant for a given dimension k. 
On the other hand, the worst-case complexity is O(Nx

1-1/k) [Pre86] 
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[Zha94], which is particularly inefficient. Fortunately, results from 
the literature and from our experiments (see sections 4.6 and 5.4) 
show that, practically, the performances of the k-D tree search 
are closer to the expected behavior. 

Let’s examine the particular case of the ICP. As said before, 
the particularity of the data considered in the ICP is that they 
are surfaces, which only represent a small part of the 3D space. 
When a test point p is far from the data X, the search is much 
less effective since all coupling distances are of similar length 
and much bigger than the average distance between the points of 
X. The discrimination power of single keys falls short of separate 
points with similar distances. This effect can be seen in Figure 
3.9. It shows the time required for the closest point search at 
each iteration of the ICP for a typical registration. 
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Figure 3.9: Average search time using a k-D tree vs. iteration for a 
typical registration with a very rough initial matching 

Another specificity of the closest point search in the ICP is the 
value of Dmax. In the general case, Dmax is set to infinity to be 
sure that the closest point is found. This is not very efficient 
since the larger Dmax is, the more branches must be inspected. As 
seen in 2.5.1, a distance threshold τ can be used to get rid of 
outliers in the ICP. All couplings with a distance bigger than τ 
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are not considered in the registration computation. This can be 
used to our advantage because we can then set Dmax = τ. The 
effect of setting a different Dmax can be seen in Figure 3.9. The 
value of τ decreases between iterations 7 and 8 and the resulting 
reduction of the search time can be clearly seen. 

Other smart methods to set Dmax exist, like using the distance 
of the previous coupling, be it spatially [Sch98b] or temporally 
[Sim95]. 

3.5 Summary of acceleration methods 

Table 3.2 presents a summary of the ICP acceleration methods. 

General class Name/author Method Comments 

Hardware 
acceleration 

Parallel ICP 
algorithm [Lan01] 

Parallel 
implementation 

• linear gain with 
nb. CPUs (up to 
16 CPUs) 

Reduction of n Accelerated ICP 
[Bes92] 

Extrapolation of 
the registration 

parameters 

• gain factor of up 
to 3 

- risk of overshoot 

Reduction of n 
Decoupled 

Accelerated ICP 
[Sim95] 

Extrapolation of 
rotation and trans-
lation parameters 

• gain factor of up 
to 4 

- risk of overshoot 

Reduction of n 
Double threshold 

weightings 
[Sch98b] 

Give more weight 
to farther inliers 

• gain factor of 
around 2 

Reduction of 
Ni 

Random control 
points [Mas96] 

Random selection 
of a subset of Nc 

points 

• gain of Np / Nc 

- lack of precision 

Reduction of 
Ni 

Control points 
[Che92] [Bre99] 

[God01] 

“Intelligent” 
selection of a 

subset of Nc points 

• gain of N  / N  p c
- risk of a lack of 
precision 

- big compu-
tational cost 

Reduction of 
Ni 

Coarse to fine 
matching 

[Zha94] [Tur94] 

Execute the first 
iterations at a 
lower resolution 

• gain factor of 
around 2-4 
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Acceleration of 
the closest 
point search 

k-D tree 
[Bes92] [Zha94] 

Use a 
multidimensional 
binary search tree 

• O(N  logN ) p x
- not very effective 
on rough initial 
matching 

Acceleration of 
the closest 
point search 

Elias method or 
distance fields 
[Gre01] [Tub02] 

Divide the space 
into congruent 
sub-regions 

- big memory use 
- not adapted for 
extra-features 

Acceleration of 
the closest 
point search 

STCNN method 
[Gre01] 

Use spherical and 
triangle constraints 

with previous 
corresp. caching 

• O(N ) best case p
- ineffective on 
rough initial 
matching 

Acceleration of 
the closest 
point search 

Reverse calibration 
[Bla95] [Wei97] 

Project points in 
the range image 
plane using cali-

bration parameters 

• complexity O(Np) 
- need a very good 
initial matching 

- scanners calibra-
tion parameters 
must be known 

Acceleration of 
the closest 
point search 

Z-buffer(s) 
projection 

[Ben95] [Ben96] 

Project points in 
Z-buffers and 
perform local 

searches 

• complexity O(N ) p
- need a very good 
initial matching 

Table 3.2: A summary of ICP acceleration methods 

3.6 Discussion and conclusion 

This chapter presented and compared most of the solutions for 
the acceleration of the ICP algorithm. Three main types of 
acceleration methods have been defined: reduction of the number 
of iterations, reduction of the number of data points and 
acceleration of the closest points search. 

One can note here that all three types of acceleration 
methods are quite independent and consequently can be combined 
together. For example, Simon [SIM95] mixed accelerated ICP with 
k-D tree and Zhang [ZHA94] used both coarse to fine strategy 
and k-D tree. Recently, Rusinkiewicz [Rus01] mixed a projection 
method with a selection of control points to obtain a very fast 
ICP. 

Reduction of the number of iterations n only has a minor 
impact on the total running time of the ICP compared to the 
other two classes of solutions. Reduction of the number of points 
can be very efficient, computationally speaking, especially when 
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using only a subset of the data (control points). However the 
quality of the matching can suffer since details can disappear. 
Finally, the acceleration of the closest points search permits to 
reduce the complexity of the ICP - to O(NplogNx) or even O(Np) - 
and generally has the biggest impact on the speedup, especially 
for large datasets. Projection methods are the most efficient in 
term of speed but their main downside is that a very good 
starting approximation is generally needed for a successful 
matching. 

As we can see, a lot of the existing solutions generally imply 
a tradeoff between speed and quality of matching. Keeping this 
in mind, this work concentrates on trying to maintain the quality 
of matching while speeding up the ICP. 

In this context and examining the existing solutions, a coarse 
to fine approach and a k-D tree closest point search seems to be 
the most appropriate methods. In the next chapter, a solution for 
fast closest point search is presented and compared to the k-D 
tree approach in terms of speed and quality of matching. Then, a 
general multiresolution coarse to fine scheme is proposed and 
analysed in Chapter 5. 
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Chapter 4 
The Neighbour Search Algorithm 

In this chapter, a novel algorithm for fast closest point search to 
speed up the ICP is presented. It consists of a heuristic that 
uses neighbourhood relationships to obtain a first approximation 
of the closest points and refines the results by a local search. 
Part of the presented work has been published in [Jos02a]. 

4.1 The neighbourhood relationship hypothesis 

The proposed algorithm assumes the existence of a neighbourhood 
relationship between the two sets of points P and X. Given that 
there exist neighbourhoods V and V’ defined in respectively 
datasets P and X, the relationship hypothesis is that two 
neighbours in a dataset possess closest points that are neighbours 
in the other dataset. Formally, the principle of this 
neighbourhood relationship is exposed in Figure 4.1: given a point 
pk in dataset P and its corresponding closest point xk in dataset 
X, the closest point xi of pi, if pk belongs to neighbourhood V of 
pi, V(pi), is found in the neighbourhood V’ of xk, V’(xk). 

The proposed idea towards a faster search is to use good 
approximations of the closest points instead of exact closest 
points. The neighbourhood relationship is used to get a first 
approximation of the closest point and, then, a local search can 
be performed to refine the result instead of an exhaustive one: if 
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pi possesses a neighbour pk in dataset P, with a know closest 
point xk in dataset X, finding the closest point of pi can be 
reduced to searching the closest point in the neighbourhood V’ of 
xk, V’(xk). 

XP

piV(pi)

V’(xk)xi?

xk

pk

closest
point

relationship

 

Figure 4.1: The neighbourhood relationship assumption 

4.2 Basic algorithm 

The following pseudo-code formulates the closest point neighbour 
search algorithm: 

 

• input: datasets P and X, with associated 
neighbourhood, V(P) and V’(X) 

• output:  for each pi of P, an approximation xi of its 
closest point in X 

• procedure   neighbour_closest_point_search (P, X) 

       for (each pi of P) do 

        if ( ∃  xk closest point of pk ∈  V(pi)) then 

          xi = search_closest_point (pi, V’(xk) ); 

        else 

          xi = search_closest_point (pi, X); 
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It appears that for each point pi, the closest point search is 
performed either in the full set X or only in the neighbourhood 
V’(xk), depending wether or not at least one neighbour of pi has 
already a known closest point. Formally, this closest point search 
algorithm has therefore a theoretical best-case complexity of 
O(Np). This is better than the one using k-D tree, O(Np logNx) 
and lets us expect an overall gain in speed over using a tree 
search. 

The worst-case complexity corresponds to the conventional full 
search discussed so far. A good suggestion here is to use a tree 
search, instead of an exhaustive search, when searching the full 
set X - other potential ideas would be to use a temporal cache or 
a heuristic method like 3 steps algorithm, in range images -. 
Using this method, it is interesting to note that the neighbour 
search algorithm cost worst case is basically equal to the tree 
search O(Np logNx), as long as the cost of the local search is 
smaller than a tree search of course. 

Of course, the order in which points pi of P are scanned is 
also important. Using a random method is a bad idea, as it 
would create a high number of global searches and pushes 
complexity toward the worst case. Consequently, the basic idea is 
to scan points using a diffusion method, such as the next point 
to be scanned is chosen in the neighbourhood of the points that 
already have a known neighbour. 

Concerning convergence, ICP can't be proven to converge 
anymore when using approximations of the closest points. 

One can note here that the proposed algorithm can be 
combined with the other methods of acceleration like reduction of 
the number of iteration or reduction of the number of data 
points. 

4.3 Data structure considerations 

Structured datasets are needed to have a defined neighbourhood. 
In many cases, it already exists a priori or at least can be built. 
Generally speaking, applications using 3D registration rely on 
either range images, clouds of points or triangle meshes as their 
input data. A neighbourhood exists in a range image, where 
direct neighbours in the image are also neighbours on the surface 
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(with a few exceptions explained below). It also exists in the case 
of triangle meshes, where neighbourhood is defined by belonging 
to the same triangle. In the case of a cloud of points, an existing 
triangulation algorithm (like the ball-pivoting algorithm [Ber99] 
for example) can be used to create a triangle mesh. Such a 
neighbourhood is needed in both the P mesh, to obtain closest 
point approximation, and the X mesh, to make the local search. 

4.3.1 Resolution variation 

The efficiency of the presented algorithm is related to the 
existence of the closest point xi of pi in the neighbourhood V’(xk). 
Practically, the resolution of the data has a direct influence on 
this and is affected by different factors like the resolution of the 
scanner, the direction of the scan and the existence of hidden 
surfaces. 

If the datasets that are being matched don’t have 
approximately the same resolution, or at least resolutions in the 
same range, the neighbourhood relationship hypothesis is still 
valid but the size of the local search relatively to the resolution 
isn’t anymore. In this case, the size of the local search needs to 
be adapted. Fortunately, for most applications the resolution of 
the datasets is roughly the same, as long as the used scanning 
tools remain in the same configuration for the different 
measurements. 

The problem that remains is that, even with the same 
scanning resolution, some local changes in resolution can appear. 
This is caused by the fact that the viewing angle on an 
overlapping surface part is often different between scans, as 
shown in Figure 4.2. The size of the local search directly 
influences the exactness of the matching: the bigger the size, the 
higher the chance that the real closest point will be found. A 
discussion about this subject oriented toward range images can be 
found in section 4.4.1. 
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Figure 4.2: Influence of local resolution variation on the neighbour search 

The situation is worse when hidden surfaces are found in the 
data. Figure 4.3 presents such a case. It presents a surface with 
a “hole” in it. The concavity created by the hole is mostly hidden 
in one of the view, set as P in this example. Consequently, 
points 2 and 3 are neighbours in the range image (they 
correspond to two successive measurements) but they are not on 
the surface. On the other hand, most of the surface is visible in 
view X. The example uses a local search in a neighbourhood of 
size n=5 and starts from point 1. Unfortunately, using the 
neighbour search results in some very bad couplings in this case. 
Basically, this problem exists only when using range images since 
points 2 and 3 wouldn’t be considered neighbours otherwise, as 
explained in the next section. A fairly easy solution to this 
problem is proposed in 4.4.2. 
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Figure 4.3: Bad couplings created by hidden surfaces 

4.3.2 Unconnected datasets 

A problem that has to be taken into consideration is that some 
dataset can contain different subsets that aren’t connected 
together in term of neighbourhood. This is the case for triangle 
meshes in which multiple surface patches could be found. For 
example, a triangulation of the dataset P of Figure 4.3 would 
certainly create 2 unconnected surface patches separated between 
points 2 and 3, instead of a single surface “covering” the hole 
(see section 6.2). Background, shadows and specular reflections 
can be responsible for missing data points in range images 
obtained from optical range finders. The presence of several 
missing data points can also create unconnected subsets of data 
in range images. These unconnected datasets can have negative 
effects in both P and X datasets, as explained below. 

On dataset P, there can be situations where several points pi 
have not a single valid neighbour pk. In that case, the number of 
global closest point searches increases, which can degrade the 
performance of the algorithm in term of speed. However, as long 
as a smart method is used to scan the points of set P, the 
number of global search is basically equal to the number of 
unconnected subsets. This means that in most datasets, the 
number of global search is insignificant versus the number of 
points. 
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On dataset X, this can indeed lead to cases where closest 
point local searches get “stuck” in a subset due to neighbourhood 
restrictions. It creates situations with more bad approximations of 
closest points and bigger errors. An interesting remark can be 
done before trying to actually solve this problem: assuming 
weights are considered in the closest point couplings in ICP, to 
get rid of outliers (2.5.1), most points belonging to an erroneous 
coupling will be seen as outliers and consequently won’t have an 
impact on the registration (as for the bad couplings of Figure 
4.3). This means that the quality of the registration will be 
affected a bit by the fact that less closest point pairs are taken 
into account to compute the transformations but won’t be too 
affected by bad approximations. 

That said, one can easily conclude the dataset containing the 
less subsets is preferably considered as X, even if the cost of the 
search may be a bit higher. A good way to handle this could be 
to alternate P and X for both datasets. In the case of a triangle 
mesh, the only way to reduce the number of bad approximations 
is to create additional neighbourhood relationships for points 
sitting on boundaries of the subsets. These could be for example 
the closest point in a different subset. Simpler solutions exist for 
range images and are discussed in the next section. 

4.4 Algorithm applied to range images 

When considering range images, each point possesses either 4 or 
8 direct neighbours (except points on borders), depending on the 
considered topology (V-4 or V-8 neighbourhood). A very basic 
algorithm is considered here. Neighbourhood V is the 3x3 window 
surrounding the point pi in P (V-8 neighbourhood) and 
neighbourhood V’ is a nxn window in X. We choose to scan the 
points of range image P row by row, starting from upper left. 
That way, the possible direct neighbours of pi with a known 
closest point pk can be found on the previous point in the same 
row and in the previous row (see image P on Figure 4.4). Those 
4 possible candidates are just checked sequentially and the first 
one that possesses a known closest point is chosen as pk. 

Normally, any of the candidate neighbours possesses a known 
closest point, except for the first scanned point and in case of 
missing data points. 
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Figure 4.4: Neighbour search using range images 

Once pk and its corresponding closest point xk are known, the 
local closest point search of pi is done in a square neighbourhood 
zone of size nxn, centred on the approximation xk (see image X 
in Figure 4.4). If no point pk can be found, a k-D tree search is 
performed in X, as suggested previously. 

The pseudo-code of the closest point neighbour search 
algorithm for range images, combined with a tree search, is 
looking as follows: 

 

• input: 2 range images, P and X, and a tree search 
structure for image X, Xtree 

• output:  for each point pi of P, an approximation xi of 
its closest point on X 

• procedure   neighbour_closest_point_search (P, X, Xtree) 

       for (each pi of P sequentially) do 

        for (each neighbour candidate pk) 

         if (pk ≠ NULL ) then 
           xi = zone-search_closest_point (pi, X, xk); 

           end for each pk; 

        xi = tree-search_closest_point (pi, X, Xtree); 
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4.4.1 Selection of the local search size nxn 

As seen above, the size of the local search directly influences the 
exactness of the matching. Of course, the bigger the zone, the 
better the approximation, but the longer the search as well, so a 
compromise has to be found. A simple reflection to estimate an 
efficient size for the local search is made in this section. 

If the datasets P and X have been taken using the same 
scanner resolution 1 / r, the relation between the resolution of 
the scanner and the resolution of the data 1 / d depends of the 
angle of view and is given by 
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as shown in Figure 4.5. 
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Figure 4.5: Comparison of the resolution of the data vs. angle of view. 

The distance between a point pi and its chosen neighbour pk is 
approximately dp. Similarly, the distance between the point xk 
and its direct neighbours xj in the range image is roughly dx. If 
we consider that there is no problem related to hidden surface or 
missing data (§4.3), we can also estimate that the distance 
between their respective closest points xi and xk is equal to dp. 
Consequently, the size of the nxn search window in the range 
image X must at least be equal to 
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 (4.2) 

to be sure that xi is found in it. 
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The worst situation appears when a plane is scanned and 
dataset X has maximum resolution (a small dx), which happens 
when αx = 0. Table 4.1 shows the relation between the required 
size of the local search and the maximum angle of view of 
dataset P. 

n 5 7 9 11 

αp max 60° 70° 75° 78° 

number of 
distance compu-

tation (nxn) 
25 49 81 121 

Table 4.1: Relation between the required size of the local search and the 
maximum angle of view of dataset P 

These results mean, for example, that with a 9x9 search zone, all 
couplings should be correct as long as the surface of P doesn’t 
present angles of more than 75° with the scanner. Practically, we 
expect a 7x7 or 9x9 zone to be enough since most of the data 
will present a smaller view angle. If the angle of view is bigger, 
the correspondence is erroneous and there is a risk that errors 
will spread and add up. Fortunately, there are simple checks to 
avoid this case and they are presented in the next chapter. 

4.4.2 Problems and performance 

It was shown in 4.3.1 and 4.4.1 that problems could arise when 
the distance between pi and a candidate neighbour pk in the 
range image P is too big. A simple way to avoid this problem is 
to compare the range values of the point and its neighbour. 
Basically, if the difference between the ranges is bigger than a 
threshold, the candidate shouldn’t be valid. This check only adds 
a maximum of 4 subtractions / comparisons per points of P, 
which isn’t very costly. Furthermore, one could imagine stocking 
a list of the valid candidate neighbours to avoid repeating the 
checks at each iteration. 

Another check can be used to avoid the propagation of bad 
matching. It verifies the coupling weight of the candidate 
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neighbour pk, which is chosen only if it has a valid coupling, 
unless none of the candidates have one. 

4.5 Experimental setup 

The neighbour search ICP algorithm was tested on several 
different data. In this section, we introduce a few typical datasets 
we used to obtain the presented results. A general description of 
the different experiments follows. 

4.5.1 Datasets used 

Set 1 

This first set of experiments is done using two copies of the 
same dataset. The advantage of matching a dataset with itself is 
that the exact matching is known a priori. It would also have 
been the case with data P being a subpart of X. 

 

Figure 4.6: Triangulated representation of the AFM range image in the 
test program 
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Data represent a very small impurity measured by an atomic 
force microscope (AFM). The range image contains 256x256 points 
and a down-sampled triangulated mesh containing approximately 
1000 points is shown in Figure 4.6. This AFM depth map 
possesses no missing data point, insuring that only the first 
closest point computation doesn’t possess at least one candidate 
neighbour. 

Set 2 

The second set of measurements uses two different, partially 
overlapping datasets. Registering partially overlapping datasets 
typically represents the problem of views registration for virtual 
modelling. 

Presently, the data represent the surface of an irregular 
substrate measured by an AFM. The second dataset has been 
obtained during a second acquisition, after a shift of the sample 
in the xy plan. The overlap of both sets is approximately 50% of 
their total surface. Both images are 256x256 points big and 
Figure 4.7 shows a render of the two coarsely aligned sets. 

 

Figure 4.7: Range image and surface rendering of two partially 
overlapping AFM datasets 

Set 3 

The third set of measurements uses two partially overlapping 
datasets as well. The data are range images of a duck toy taken 
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with our structured light range finder and have been used to 
build a full model. The overlap of both views is approximately 
50% of their total surface. Figure 4.8 shows both range images 
and the two coarsely aligned sets, rendered in the working 
environment. 

The main difference between this set and the previous one is 
that it contains missing points (with a null value, shown in 
black), hidden surfaces and noise. Each range image contains 
300x300 points (90000) but only 20000 to 30000 actually contain 
non-null values. 

 

Figure 4.8: Partially overlapping range images of a duck toy and their 
corresponding surface rendering 

4.5.2 Experiments description 

Our experimental program has been coded and ran on an Indigo2 
175 MHz SGI workstation. The implemented ICP algorithm uses 
a multi-feature distance (2.16) and binary weighting (2.20). 
Practically, we did not investigate the use of colour in our tests 
so the multi-feature distance is restricted to using points and 
normals. Concerning the binary weighting, we used two fixed 
thresholds depending on the resolution of the data. The first 
iterations are made with a larger threshold, to ensure the 
convergence of datasets far from each other, then a smaller 
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threshold is used to finish the matching. Finally, the complex 
error change criterion is used to define when to change the 
threshold and to automatically stop the iterations. 

As said before, for comparisons, we chose to use a k-D tree 
as our reference fast closest point algorithm for the ICP. The 
main reason is that it still permits a reasonable speeding of the 
matching while maintaining the quality of the matching. The 
implemented k-D tree method is based on the original optimised 
k-D tree proposed by Bentley (balanced tree, with fixed key at 
each level and empty buckets). The closest point search is made 
with Zhang’s algorithm (§3.4.3). 

To measure the domain of convergence, we used the SIC 
setup presented in section 2.8. A slight modification of the size of 
the sphere onto which the different initial configurations are 
chosen has been made: the diameter of the circumsphere of 
dataset X is divided by a factor four. This has been made since 
we use surfaces from range images instead of complete object 
models and the data would really be too far from each other. We 
also limit the value of the zenith angle to the range φ = [0−100].   

For practical reasons, some down sampled data have been 
used to compute the SIC ranges. It was done that way because 
the time requested for the whole computation at full resolution 
was too long. On the other hand, a sub set of 30 initial 
configurations has been chosen to test the matching of high or 
full resolution data. 

The absolute error measurements are done by comparing the 
actual position of the dataset P with the position of the correct 
matching. Practically, the transformations are compared and the 
results are given as a rotation and a translation error. The 
rotation error eϕ is given in degrees and the translation error et 
is given as a percentage of the circumsphere radius of X. 

Finally, we use two representations to measure the 
acceleration of the different methods. The first one is the actual 
execution time, be it for the closest point search or the global 
ICP matching. The second representation is the gain G over 
using the basic exhaustive search method. 

fast

exh

t
t=G  (4.3) 

with texh and tfast are the measured run times when using 
respectively the exhaustive search and a fast search method. 
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4.6 Experimental results 

This section summarizes the principal results obtained while 
testing the neighbour search algorithm. For simplification, we will 
use the term “nxn n-search” for neighbour search using a local 
nxn window in this section. We will also call dg the classical 
geometric distance and dn the multi-feature distance using 
normals. 

4.6.1 Matching quality 

As said before, the matching error and the domain of convergence 
are the two essential measurements needed to quantify the 
quality of convergence. Our first observation concerns the 
matching errors, since they are needed to define the successful 
matches. 

Matching error 

A matching is considered successful when both the rotation and 
translation errors fall below some fixed thresholds. Figure 4.9 
shows the rotation error eϕ evolution for three typical 
registrations: an unsuccessful matching using the neighbour 
search and two successful ones using the neighbour search and a 
k-D tree. We can see that the choice of the thresholds is not 
critical since the error of the unsuccessful registrations is 
generally much bigger than the threshold (set to 2° in this 
example). 
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Figure 4.9: Evolution of the rotation error for 3 typical registrations 

Practically, we want to compare the registration errors when 
using a neighbour search and when using a k-D tree search. 
Table 4.2 presents the average rotation and translation errors for 
successful convergences with the different datasets. The principal 
observation we can make is that, in case of successful 
convergence, all methods possess errors in the same range. It 
shows that using the neighbour search doesn’t have a bad 
influence on the final registration. 

 set 1 (dg) set 1 (dn) set 2 (dn) set 3 (dn) 

k-D tree 3.9° / 0.54% 0.0° / 0.0% 1.7° / 0.97% 0.5° / 0.20% 

5x5 n-search 3.9° / 0.58% 0.0° / 0.0% 2.5° / 1.20% 0.6° / 0.22% 

9x9 n-search 3.9° / 0.58% 0.0° / 0.0% 1.9° / 0.99% 0.5° / 0.20% 

Table 4.2: Average registration errors (eϕ / et) with the different datasets. 
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Domain of convergence 

The SIC-maps of Figure 4.10 present the domains of successful 
initial configuration of set 1, using distance dg. Figure 4.11 does 
the same for set 2, using distance dn. Globally, it appears that 
the neighbour search performs as well as a k-D tree in terms of 
SIC-range. However, there are some nuances presented below. 

a)

b) c) d)

 

Figure 4.10: SIC-maps of set 1, using distance dg :a) k-D tree b) 5x5 n-
search c) 7x7 n-search d) 9x9 n-search 

The influence of the sizes of local search nxn is examined 
here. When using the Euclidean distance dg, a 5x5 n-search was 
sufficient to maintain the same SIC-range. On the other hand, 
when using dn, the range of successful initial configuration is 
practically reduced to nothing with a 5x5 n-search. A 7x7 n-
search improves the SIC-range but the latter is still reduced. 
Finally, a 9x9 n-search is shown to work fine. 
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a)

b) c) d)

 

Figure 4.11: SIC-maps of set 2, using distance dn :a) k-D tree b) 5x5 n-
search c) 7x7 n-search d) 9x9 n-search 

The fact that the neighbour search requires a larger window for 
correct convergence when using dn can be explained by the fact 
that the neighbourhood relationship assumption is mainly based 
on the Euclidean distance dg. Using the multi-feature distance dn 
basically reduces the validity of the neighbourhood relationship 
assumption, especially when surfaces are poorly aligned. 

Practically, when trying to register datasets 2 and 3 using 
the sole point distance dg implies that the ICP algorithm 
practically never converges to the right positioning. In fact, a 
very good initial matching is required in this case, which 
confirms that the use of the multi-feature distance dn can have a 
significant impact on the quality of the registration. 
Consequently, we focused on using distance dn with these sets. 

Figure 4.12 shows the influence of the resolution on the SIC-
range. The SIC-maps of set 3 are compared at different 
resolutions. 
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a) b) c)

 

Figure 4.12: SIC-maps of set 3, using distance dn and a 9x9 n-search: 
a) 6000 points b) 1500 points c) 350 points 

One can see that, unfortunately, the SIC-range tends to decrease 
when the number of points increases. Basically, the SIC-range 
also diminishes a bit when using a k-D tree, but much less 
dramatically. A tentative explanation of this problem is that the 
absolute size of the local search diminishes if the resolution of 
the data increases and the local search window remains the 
same. A solution to this problem is discussed below, in section 
4.7. 

4.6.2 Search times 

Figure 4.13 and Figure 4.14 present the closest point computation 
time per point of P as a function of the number of point of X. 
The neighbour search and k-D tree search methods are compared 
at different resolutions. Two values of k-D tree are given at each 
resolution, a minimal time and a maximal time. This is to reflect 
the difference in the computation time depending on the distance 
between both datasets, as explained in 3.4.3. It must be 
considered as a best-case / worst-case type of measure. The 
average k-D tree search value depends a lot on the data and the 
initial matching but we can estimate it to approximately 2 times 
the k-D tree min. value. 

In the case distance dg is used (Figure 4.13), the gain in 
speed of the neighbour search algorithm over minimal tree search 
lies approximately between 2 and 3. When using distance dn 
(Figure 4.14), the gain can go up to 5. This is bigger than the 
first case, even if a 9x9 n-search is used vs. a 5x5 search. It 
basically shows the problem of the k-D tree when using a larger 
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dimension space, in this case dn (k=6 instead of k=3 with an 
estimated 2k distance computations). 
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Figure 4.13: Comparison of closest point search time for set 1, using dg 
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Figure 4.14: Comparison of closest point search time for set 2, using dn 
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Of course, this is using the best-case for k-D tree, which means 
it is basically the worst-case gain of the neighbour search. 
Considering the maximal k-D tree values, the gain can go up to 
15 times! 

If we examine the general behaviour of the curves, we can 
see that the expected linear complexity O(Np) of the ICP is 
reached since the duration of the neighbour search remains 
constant. The O(logNx) behaviour of the k-D tree can also be 
observed. 

4.7 Results summary and discussion 

The different results show that the proposed neighbour search 
algorithm performs significantly better than a k-D tree search 
with gains up to 5. Furthermore, the theoretical complexity of 
O(Np) was practically reached, which means that the gain over a 
k-D tree would increase with larger datasets. 

The principal problem of the neighbour search is that the 
absolute size of the local search diminishes if the resolution of 
the data increases and the local search window remains the 
same. It was shown that the range of successful initial 
configuration actually decreases in this case. Increasing the size 
of the local search window would certainly permit to avoid this 
problem but it isn’t efficient, computationally speaking. 

The main idea to maintain the SIC-range and still keep a 
9x9 n-search is to go toward a coarse to fine multiresolution 
scheme. Indeed, it was shown that the SIC-range is maintained 
with low-resolution data. Consequently, the SIC-range should be 
maintained on high-resolution data as well if the neighbour 
search is applied on lower resolution data for the first iterations. 

A multiresolution adaptation of this algorithm is also very 
easy to implement in the case of range image. Using different 
resolution simply corresponds to skipping points in the range 
images when doing the neighbour search, and this for both P and 
X sets. One could for example use 1/16 points for the first 
iterations, continue with a few iterations using 1/4 points and 
finish with the whole datasets. Description and analysis of a 
multiresolution scheme can be found in Chapter 5. 
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4.7.1 Future considerations 

One can note that the square neighbourhood zone search is basic 
and simple for testing purposes, but a smarter local search 
method could be considered later on. A steepest descent or a 
local 3 steps algorithm, for example, could both diminish the 
number of local searches and augment the exactness of the 
result. A local 3 steps algorithm could also help to reduce the 
subset connection problems described in 4.3.2 by creating a larger 
neighbourhood search zone with the same number of scanned 
points. 

4.8 Chapter conclusion 

A new closest point algorithm for fast ICP registration has been 
proposed and analysed in this chapter. It permits to reduce ICP 
complexity to O(Np). The method uses the assumption that two 
neighbours on a surface possess closest points that are 
neighbours on the other surface to easily obtain a first 
approximation of the closest point and then proceeds with a local 
search for refining the result. 

Results from a series of registration experiments show that 
the proposed neighbour search algorithm performs significantly 
better than a tree search. The theoretical complexity of O(Np) 
was practically reached. Also, the method improves the 
computation speed of the ICP algorithm, without altering the 
matching error and the domain of convergence. The results show 
that, in nearly all cases, the ICP registration that uses the 
neighbour search still converges toward the same position as 
when using an exact closest points search. This confirms the good 
potential of the proposed method. 

The neighbourhood relationship isn’t always valid, but when 
working with data from range image, which is often he case in 
3D vision, it is shown to be working in most cases. 

The main problem of the neighbour search is that the 
absolute size of the local search diminishes if the resolution of 
the data increases and the local search window remains the 
same. It was shown that the range of successful initial 
configuration actually decreases in this case. A multiresolution 
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approach, presented in next chapter, is expected to “cure” this 
problem. 

Finally, we can note that the algorithm was mainly tested 
with range images but that it extends to cloud of points where 
the neighbourhood relation exists. 
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Chapter 5 
The Multiresolution Scheme ICP 

A multiresolution scheme applied to the ICP algorithm is 
proposed and analysed in this chapter. Then, the combination of 
this multiresolution approach and the neighbour search algorithm 
is taken into account to obtain a very fast and robust ICP 
algorithm. Part of the content of this chapter has been published 
in [Jos02b]. 

5.1 The basic multiresolution scheme 

The principle of the multiresolution ICP is to make the first few 
iterations using down sampled data and to further increase the 
resolution of the data in the following iterations, creating a 
coarse to fine matching (Figure 5.1). The main expected 
advantage of the multiresolution is the reduction of the 
computational cost, given that the duration of each iteration 
made at lower resolutions is reduced. The precision of the final 
matching is expected to be the same as when using all the 
points for the whole registration. In addition, the total number of 
iterations should be reduced this way, mainly because a lower 
resolution matching generally implies more important rotations 
and translations, meaning a faster convergence. 

The multiresolution coarse to fine strategy is not a new 
concept and has been widely used in image processing and other 
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domains for years. A few publications (as seen in 3.3.3) also 
briefly presented some coarse to fine solutions applied to ICP. On 
the other hand, and to the author knowledge, no real analysis of 
such solutions have been presented. This basically motivated the 
existence of the present chapter, which presents and analyses 
such a multiresolution coarse to fine solution, applied to the ICP. 

5.1.1 Chosen multiresolution pattern 

The multiresolution pattern chosen here is to divide the number 
of points by a factor N for each resolution step i, i = 1 being the 
full resolution data step. If Np,i and Nx,i, are the number of 
points of P and X at the ith step, we can write: 
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The lowest possible resolution is defined by keeping the number 
of points of the reduced datasets above a minimum value Nmin. It 
is typically chosen between 50 and 100 as a lower number may 
result in too few pairings for correct computation of best 
transformation. 

This can be formalized by 
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where k is the number of resolution steps. 

For example, if we have datasets P and X which contains 
Np = Nx = 5000 points each, a multiresolution factor N=4 and 
Nmin=50, the number of resolution steps k is equal to 4. 
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The number of points Ni at each steps i is 
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where Np,1= Np and Nx,1= Nx. 
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The number of iterations at each resolution step isn’t set and can 
vary from case to case. Instead, the algorithm goes to the next 
resolution step automatically when a defined stop criterion is 
reached at the current one. In our case the stop criterion is the 
complex error change (see 2.7). Figure 5.1 summarized the 
multiresolution ICP principle. 
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Figure 5.1: The multiresolution ICP principle 

5.1.2 Cost reduction factor 

The possible gain in speed can be estimated by a simple 
development. As said before, the basic ICP algorithm has a 
complexity of O(NpNx) and the costs for an iteration are as 
follows: 

 • at resolution step i: 

ix,ip,i NNC c≈  (5.5) 

 • at step i+1, Np,i and Nx,i reduced by a factor N: 

2
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2
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1+i N
C

N

NN

N

N

N

N
C ==≈ cc  (5.6) 

This means that if both datasets are reduced by a factor N, the 
cost reduction factor for one iteration is: 

2
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C
C =  (5.7) 
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5.1.3 Estimation of the speedup gain 

Now, say m is the number of iterations needed for a registration 
in monoresolution and ni is the number of iterations performed at 
resolution step i for the same registration in multiresolution, the 
cost of the complete registration is: 

 • monoresolution: 

m C1 (5.8) 

 • multiresolution: 
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and the gain of multiresolution is: 
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To analyse the numerical value of the gain, we make the 
hypothesis that the total number of iterations remains the same 
in both cases. We will also distinguish 3 cases here on how 
iterations are distributed for each step: 

1. a constant number of iterations at each step 

2. an increasing number of iterations with the higher resolutions 

3. a decreasing number of iterations with the higher resolutions 

Basically, they can be seen as medium, worst and best theoretical 
cases. The associated linear functions of ni are: 
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where k is the number of resolution steps. 
This gives us the following result for estimated gains: 
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Figure 5.2 shows a graphical presentation of these functions for 
N=4. One can see that the higher the number of steps, the 
higher the expected gain is. The theoretical best case (3) has a 
quadratic behaviour, while gain functions 1 and 2 are nearly 
linear. 
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Figure 5.2: Expected multiresolution gains G(k) for the basic ICP 
algorithm, for N= 4 
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5.2 Coupling multiresolution with fast closest point search 

Using the sole multiresolution scheme to speed up the ICP 
algorithm would not be really effective when compared to 
solutions that reduce the complexity of the closest points search. 
But both types of acceleration methods are quite independent and 
consequently can be combined together. Thus, we consider 
multiresolution combined with the fast ICP algorithms tree search 
and neighbour search. Such a combination should permit to 
create a very fast ICP algorithm. 

Moreover, multiresolution matching is expected to have an 
added beneficial impact on both tree search and neighbour search 
methods. In the case of a k-D tree search, the first iterations 
require a longer search time because of the coarse alignment of 
the data [Zha94] (see Figure 3.9). With multiresolution, these 
iterations are typically done with a very low resolution, which 
greatly reduces the search time. In the case of the neighbour 
search closest point algorithm, higher resolutions and coarser 
matching decrease the exactness of the closest points pairing 
which typically reduces the range of successful initial 
configurations (SIC), as seen in the previous chapter. Using a 
lower resolution for the initial iterations, when matching is 
coarse, should permit to avoid this problem. 

5.2.1 Cost reduction factor 

As seen before, the complexity of the ICP algorithm changes 
when using tree search or neighbour search. It is O(Np logNx) 
with a tree search and O(Np) with the neighbour search. 
Consequently, the cost reduction factors are not the same in 
these cases. 

If both datasets are reduced by a factor N, the cost of 
iteration in the tree search case is: 
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and, consequently, the cost reduction factor for one iteration is: 
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Table 5.1 shows a summary and comparison of the different cost 
reduction factors, when datasets X and P are reduced by a factor 
N. 

 Reduce Np Reduce Nx Reduce Np and Nx 

normal ICP N N N2 

k-D tree 
ICP N 

logNlogN
logN

x

x

−

 

logNlogN
logN

N
x

x

−

 neighbour 
search ICP N 1 N 

Table 5.1: Cost reduction factors for data reduced with a factor N 

If we examine the k-D tree case, the value of the expression 
“log(Nx)/( log(Nx)-log(N))” is typically situated between 1 and 2, as 
shown in Figure 5.3. This means that it is basically worthless to 
use a lower resolution on dataset X when using a tree search. 
Firstly because the cost reduction value is much lower than when 
using a similar resolution on dataset P and secondly because it 
would imply to build a new tree at each resolution. 
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Figure 5.3: log(Nx)/( log(Nx)-log(N)) plot for typical values of N 
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In the case of the neighbour search, the reduction of dataset 
X doesn’t have an influence on the cost at all. Note however that 
in practice, dataset X needs to be reduced as well in order that 
the relative size of the local search area stays the same. 

Taking the above into account, we can consider that the cost 
reduction factor for one iteration is N if both datasets are 
reduced by a factor N, in both k-D tree and neighbour search 
cases. 

5.2.2 Estimation of the speedup gain 

Referring to equation (5.10) and if full resolution is kept on 
dataset X when using a k-D tree, the relative gain of the 
multiresolution registration for both tree search and neighbour 
search methods is: 
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Making the same assumptions as in the section 5.1.3, we now 
find the following multiresolution gains for the medium, worst 
and best hypothetical cases: 









=

∑
=

−

k

i
i

N

N

k
kG

1
1

1 1
)( ,   








 −+
=

∑

∑

=
−

=
k

i
i

k

jN

N
ik

j
kG

1
1

1
2 1

)(  








∑

∑

=
−

=
k

i
i

k

j

N
i

j

1
1

1=N kG3 )(  

(5.16) 

The expected gains have the same functional behaviours than for 
the basic ICP case, exposed in §5.1.3, but the values are slightly 
lower in this case, as seen in Figure 5.4. On the other hand, one 
can note that the global acceleration, regarding a non-accelerated 
ICP, is much higher thanks to the reduction of complexity of the 
closest points search. 
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Figure 5.4: Expected multiresolution gains G(k) for fast ICP algorithms, 
for N= 4 

The maximum number of resolution steps k is directly related to 
the number of points of the data, Np and Nx and to the reduction 
factor N. A first consequence of this is that the bigger the 
datasets, the higher the expected gain is. 

When the reduction factor N increases, the value of the gain 
increases as well for a similar value of k (not shown). However, 
the number of steps k decreases in this case, which means a 
smaller gain (following Figure 5.4). Consequently, an interesting 
representation is to actually express the gain G as a function of 
the reduction factor N. It is the case for different values of Np or 
Nx in Figure 5.5, using the medium case gain G1. 
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Figure 5.5: Expected multiresolution gains G(N) for fast ICP algorithms, 
for different values of Np or Nx 

The results of Figure 5.5 show that the smaller the reduction 
factor N, the bigger the expected gain. It also permits to see the 
gain increase with the number of points in the datasets. 

5.3 Experimental setup 

Following the previous theoretical results, we would be tempted 
to choose a value of N as small as possible. On the other hand, 
a small value of N also means a lot of resolution steps. 
Practically, we chose a value of N=4 for the multiresolution 
scheme, which represents a middle value for expected gain and 
number of resolution steps. Also, N=4 was basically easier to 
implement for range images than a multiresolution with N=2 and 
the expected gains are just a bit smaller. 

Unless said otherwise, we used the multi-feature distance dn 
and a 9x9 n-search. 

Beside these specific considerations, the same datasets and 
different algorithms presented in section 4.5 are used again in 
this chapter. 
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5.4 Experimental results 

The principal results obtained while testing the different 
multiresolution algorithms are summarized in this section. 

5.4.1 Matching quality 

Once again we want to verify that the matching error and the 
domain of convergence aren’t badly influenced by the usage of the 
multiresolution scheme and the neighbour search, since we want 
to avoid any quality versus speedup compromise. 

Matching error 

Table 5.2 shows a comparison of the average registration errors 
of dataset 3 when using and not using multiresolution, for both 
k-D tree search and neighbour search. The results show that, in 
case of successful convergence, all methods possess errors in the 
same range, multiresolution giving even slightly better results. 

 monoresolution multiresolution 

k-D tree 0.5° / 0.20% 0.01° / 0.01% 

9x9 n-search 0.5° / 0.20% 0.03° / 0.02% 

Table 5.2: Average registration errors (eϕ / et) for successful convergences, 
between monoresolution and multiresolution 

Figure 5.6 and Figure 5.7 show the evolution of the rotation 
and translation errors during the iterations. An arrow indicates 
when the resolution step changes. One can clearly see that the 
errors are generally nearly constant before a step change and 
that the following step permits to further improve the quality of 
the matching. 

The first step of the multiresolution k-D tree search is 
equivalent to using a few control points, as defined in section 
3.3.2. This result basically confirms the advantage of a 
multiresolution coarse to fine scheme over using control points, in 
terms of matching quality. 
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Figure 5.6: Evolution of the rotation error eϕ and translation errors et for 
the multiresolution n-search case. 
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Figure 5.7: Evolution of the rotation error eϕ and translation errors et for 
the multiresolution k-D tree case. 
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Domain of convergence 

The SIC-maps of the 4 cases presented above can be found in 
Figure 5.8. The results show that multiresolution does not affect 
the domain of successful convergence when coupled with a k-D 
tree search and has the expected beneficial effects on it when 
coupled with the neighbour search. More precisely, one can first 
see that when using a k-D tree, the SIC range remains the same 
when using multiresolution (a, b), given some small difference, 
mainly for very twisted initial configurations (φ > 80°). On the 
other hand, the resolution was a bit too big for the neighbour 
search to work correctly and the SIC range is much reduced in 
this case (c). However, the SIC range obtained combining 
multiresolution and neighbour search (d) is again very similar to 
the one obtained while using a k-D tree. 

a) b)

c) d)

 

Figure 5.8: SIC-maps of set 3: a) k-D tree search, b) multiresolution k-D 
tree search, c) n-search, d) multiresolution n-search 

The results are very similar when using full resolution data 
(4.5.2). In this last case, the effect of multiresolution is even 
more visible since using full resolution also tends to decrease the 
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SIC-range when using a k-D tree. Basically, multiresolution 
permits to keep a large SIC-range in most cases. 

All in all, these results confirm that the multiresolution 
scheme does not affect the matching quality for both the 
matching error and the domain of convergence. Furthermore, it 
has beneficial effects on the SIC range, especially when combined 
with the neighbour search algorithm. 

5.4.2 Search times 

Table 5.3 presents a comparison of the average total computation 
time for the successful registrations, using the different 
acceleration methods on the full resolution dataset 3. We will 
note that the results related to the neighbour search have been 
greyed out to reflect that they come from a single measurement. 

 total time (s) number of 
iterations 

relative gain 
over k-D tree 

absolute 
gain G 

k-D tree 504.1 42 1.0 60 

n-search 259.0 90 1.9 117 

MR k-D tree 59.3 36 8.5 513 

MR n-search 18.8 34 26.8 1621 

Table 5.3: Comparison of the total computation time and gains of the 
registration (at full resolution) using the different acceleration 
methods (MR = multiresolution) 

The multiresolution scheme permits to reduce the total 
registration time by an average factor between 8.5 and 14 times 
for the different cases. These results are at least equal to or 
better than the theoretical best case value found with equation 
(5.16), G3

4(5) = 8.5 (k=5 in this case). Practically, one can 
effectively see a decreasing number of iterations in the higher 
resolutions steps, as seen in Figure 5.9, although close to but not 
as important as the best theoretical case. The high gain results 
can be further explained by the fact that other factors were not 
taken into account in the theoretical estimations, like the 
reduction of the total number of iterations, especially when using 
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the neighbour search, or the beneficial effects of the very low 
resolution in the first iterations when using a k-D tree search. 
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Figure 5.9: Average percentage of iterations vs. resolution step i of the 
multiresolution ICP 

Finally, the multiresolution neighbour search ICP can be up 
to 3 times faster than the multiresolution tree search ICP and 
nearly 27 times faster than a k-D tree ICP, which shows the 
advantage of neighbour search. This gain is also expected to be 
even higher for bigger datasets, due to the smaller complexity of 
the neighbour search algorithm. 

One can also note that these relative gains refer to a fast 
ICP algorithm. The approximate gain in speed over a non-
accelerated ICP algorithm is over 1600. 

5.5 Chapter conclusion 

This chapter proposed to further accelerate fast shape registration 
by application of a multiresolution scheme to the ICP algorithm. 
The chosen multiresolution scheme proceeds from coarse to fine 
and successively improves a previous solution at the finer 
representation level. 
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In a first part, using simple hypotheses, estimates of the 
speedup gain of the multiresolution approach with respect to a 
standard monoresolution approach were established for the 
standard ICP and also for two fast ICP methods based on tree 
search and neighbour search. The results show a nearly linear 
behaviour of the gain with the number of resolution steps for the 
worst and medium cases and a quadratic behaviour for the best 
case. Typical expected gains are in the order of 4 to 10. 

In a second part, the various algorithms are experimentally 
compared in a 3D shape-matching test. In these experiments, 
special attention is given to allow only good quality matches and 
not to go in any quality versus speedup compromise. Under these 
circumstances, the results show large speedup gains that can 
reach the best theoretical expectations. 

Specifically, in both cases of fast ICP matching using a tree 
search or a neighbour search, multiresolution improves the 
registration speed by factors up to 8. These results are as good 
or even slightly better than the expected theoretical best case. 
This can be explained by the reduction of the total number of 
iterations and by the beneficial effects of the very low resolution 
in the first iterations when using a tree search. 

Combining multiresolution with the neighbour search method, 
the registration can be up to around 25 times faster than when 
using a k-D tree search, which really represents a very high-
performance ICP algorithm in term of speed. The approximate 
gain in speed over a non-accelerated ICP algorithm is over 1600. 

Finally, the pure speedup potential goes together with 
improvements observed with respect to the convergence speed and 
the matching quality. Practically and as expected, multiresolution 
permits to fully eliminate the decrease of matching quality that 
can appear when using the neighbour search. The advantage of a 
multiresolution coarse to fine scheme over using control points in 
terms of matching quality was also demonstrated. These results 
clearly show that the multiresolution scheme exploits the 
fundamental nature of shape registration to substantially 
contribute to improve its computation. 
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Chapter 6 
3D Object Modelling from Range 
Images 

Application like virtual museums, reverse engineering or 
industrial inspection generally need virtual models that are very 
close to their real counterpart. Range scanners now provide a 
simple and fast way to capture 3D data. However, most of them 
suffer from the same problem: as data is measured from a single 
point of view, only a part of the object surface can be scanned at 
a time. Consequently, acquisitions from several viewpoints must 
be performed, in order to create a model covering the whole 
surface of the considered object. These views must then be 
combined to create the final model. 

During the course of the research, a complete digitising 
system has been built. It uses range images as input and works 
with triangulated meshes. A description of its main features and 
proposed methods, as well as some results can be found in this 
chapter. The presented work has been published in [Sch97b] 
[Jos98] [Sch98a] [Sch98d] [Hug99a] [Hug99b] [Jos99] [Hug00] 
[Jos01] and [Hug02]. 

6.1 System architecture 

A general diagram of the modelling system is presented in Figure 
6.1. Of course, the input of the system is the object to be 
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scanned. Three main blocks are then defined: view digitising, 
view registration and view fusion. The view-digitising block first 
captures range images with the help of a range scanner and 
creates virtual triangulated views from them. Then, the view 
registration block aligns the different views. Finally, these virtual 
views are combined in the view fusion block, which outputs the 
expected virtual model. 

The different possible registration schemes are showed in 
Figure 6.1. One can distinguish between the global registration, 
where all views are registered at the same time, the sequential 
registration, where the different views are sequentially registered, 
and the sequential registration with partial modelling, where each 
new view is registered and fused with the partial model being 
built. 

view
digitizing

view
registration view fusion

global registration sequential registration sequential registration
with partial modeling  

Figure 6.1: Modelling system 

These different blocks are explained into more details in the next 
sections. 

6.2 View digitising 

The main goal of view digitising is to acquire the 3D data for 
each view and to present them in a virtual view format that 
preserves the topology of the scanned surfaces. Three main parts 
compose the view-digitising block: data acquisition, data 
processing and view triangulation. 
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Data acquisition 

Data acquisition consists in measuring the 3D geometry and 
range scanners now provide a simple and fast way to capture 3D 
data. Several types of range scanners are available on the market 
today, generally working on optical principles like stereo 
matching, active triangulation or focus / defocus [Sch96]. 

Each single measurement provides a range image, where each 
pixel represents the camera-to-object distance. In certain cases, 
colour can also be measured. Such a measure is essential to 
creating realistic looking virtual models. Typically, colour will be 
used for application where the appearance is important, like 
virtual museums or web shopping. 

The 3D scanners we use in our digitising system work using 
a strip pattern coding system [Abw3d], which is part of the 
active triangulation systems. Such scanners also permit to easily 
obtain colour measurements (see §6.5). 

Data processing 

During data processing, geometric data are filtered to remove 
noise and missing points. This step is also important if colour is 
used. Light reflection effects must be eliminated to retrieve the 
intrinsic colour of the object and to avoid artifacts during 
integration. A more complete explanation of the acquisition and 
processing of colour can be found in §6.5. 

View triangulation 

Finally, in view triangulation, the measured surface points are 
triangulated to create an adequate mesh representation of the 
surface. The basic method is straightforward because 
measurements in range images are ordered in a regular grid 
where topology is maintained [Rut94]. However, additional checks 
are necessary to avoid the linking of neighbouring range points 
separated by a discontinuity step, which, basically, has the 
unwanted effect to fill occluded parts with triangles. 
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These checks typically eliminate triangles that are bigger 
than a threshold [Tur94] or possess a normal nearly 
perpendicular to the viewing axis [Rut94]. 

Finally, a colour can be assigned to each vertex to create a 
coloured mesh or the whole colour image can be used as a 
texture map. Handling of textures is detailed in §6.6. 

6.3 View registration 

As one of the main purposes of the built scanning system is to 
test the presented geometric matching algorithms (mainly fast 
ICP variants), the scanning process is kept as simple as possible 
and allows an operator to place the real world object in any pose 
on the acquisition field. 

We chose not to rely on a fully automatic registration but 
rather let the user do the rough matching. Thus, one can 
separate registration in two distinct actions: interactive pose 
estimation and automatic matching with the ICP algorithm. 

6.3.1 Interactive pose estimation 

Human perception easily identifies corresponding surface parts for 
any object type and shape. Therefore, the user can easily enter a 
hint for the computer, which will then calculate the precise 
alignment using the ICP algorithm. 

The system provides an interactive interface that permits an 
operator to enter a pose estimate for the objects to be aligned. 
The different views are rendered in 3D and can be manipulated 
in all six degree of freedoms using a space mouse [Space] as 
input device (Figure 6.2). The manipulation of the space mouse 
can be a little tricky at first but the learning curve is fast and it 
then permits a very fast rough matching. An alternate solution 
for interactive pose estimation, when no space mouse is available, 
is to manually designate some point pairs between datasets and 
then perform a best transformation computation. This is the case 
in the commercial software IMAlign (now included in Polyworks 
[Innov]) for example. This solution is slower and generally more 
tedious than using a space mouse but has the advantage of 
creating a good rough matching. 
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Figure 6.2: Space mouse 

 

 

Figure 6.3: Two views of a clay rabbit, before and after the interactive 
pose estimation 
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6.3.2 Automatic matching with ICP 

The implemented ICP algorithm has the following characteristics: 

 • it uses binary weightings (§2.5.1) 

 • it uses multiple feature point matching (2.16) 

 • it uses fixed relative distance thresholds (2.20) 

 • it uses either multiresolution and k-D tree or neighbour 
search 

 • no global registration method is used 

We think this combination gives a robust matching algorithm 
with a very good tradeoff between quality of the matching, range 
of successful convergence and speed of execution. The range of 
successful convergence doesn’t have to be neglected because of the 
rough matching method we use. The SIC range needs to be 
sufficiently big so that the interactive rough alignment can be 
done fast and easily. It would have been of less importance with 
a manual point pairing solution. 

 

Figure 6.4: Fully registered views 
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6.4 View fusion 

Once the surfaces are matched, they must be fused together in 
order to eliminate redundant data and to create a unique mesh. 
Several methods have been proposed to integrate 3D views. They 
mainly differ in how they treat redundant data. They can be 
separated into two groups: partial erosion of surfaces and 
complete retriangulation of the surface points. Several authors 
[Pit96] [Tur94] erode the overlapping surfaces until the overlap 
disappears. The two surface meshes are then recombined at their 
frontiers in order to have one unique mesh for the union of the 
two surfaces. Other authors [Hil96] [Rut94] [Sou95] discard the 
mesh information from the triangulated views, if calculated at all, 
and retriangulate the overlapping zone or even the complete point 
set [Lor87] [Ber99]. 

The method we use here is part of the partial erosion 
solutions. It relies on a modelling that preserves the range 
images topology all along the reconstruction and introduces a new 
fusion algorithm that is coupled with registration. Topology 
preservation is an advantage because it permits to avoid later 
triangulation and it also permits to easily handle textured views. 
The new fusion algorithm, unlike other works where the fusion is 
a totally separated task involving 2D projection or similar 
complex algorithms, couples fusion with registration and takes 
full advantage of the available mesh correspondence to treat 
overlapping areas [Sch98a] [Hug02]. 

6.4.1 Mesh fusion algorithm 

The mesh fusion algorithm is characterized by the following 
steps: 

1. overlap detection: The valid couplings from the previous 
automatic matching are used to easily 
identify the parts of surface P which overlap 
surface X where P and X are defined as in 
the previous chapters. 

2. overlap erosion: The overlapping part of surface P is eroded. 

3. frontier detection: A gap separates the surface X and the 
eroded surface P. The frontier on P is 
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calculated during the overlap erosion where a 
closest point search detects the start of the 
frontier on X. 

4. gap filling: The gap enclosed by the two frontiers is 
filled with triangles. The filling algorithm 
works in 3D space and does not need any 
projections into tangential planes, which 
increases its reliability. 

Some details of the algorithm are discussed below and illustrated 
by examples in Figure 6.5 and Figure 6.6 below. 

6.4.2 Overlap detection 

The closest point routine of the automatic matching module 
marks the vertices on surface P that overlap surface X. To 
ensure that only close points are marked, the constant c of the 
coupling distance threshold (2.18) is set to a small value during 
the last iterations of the automatic matching. This results in a 
set CV of coupled vertices with: 

{ }1PCV =∈= kk wp  (6.1) 

6.4.3 Overlap erosion 

The erosion process eliminates all the vertices members of CV on 
surface P. A small gap of about the size of the distance threshold 
appears where the surface X faces the eroded surface PC. 

VC C-PP = , { }VC CP ∉∈= kk ppP  (6.2) 

6.4.4 Frontier detection 

Triangles with only one marked vertex are used to extract the 
frontier on surface P facing surface X. For every triangle with 
one marked vertex, the edge that is not connected to the marked 
vertex is put into a frontier edge list F. The list F is build as 
follows: 

During the automatic matching the list 
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that contains the triangles with only one coupled vertex is 
established. For every triangle in TF, the vertices that are not 
coupled are inserted in 

{ }0 and T with F ,F, =∈∈= illlil wttv  (6.4) 

F is a two dimensional list which contains several potential 
frontiers on P composed of a sequence of ordered edges. The 
order of the edges is clockwise and defined by the normal vector 
of the triangle which an edge is part of. F is traced continuously 
in order to merge touching frontiers. Figure 6.5 shows the erosion 
and frontier extraction process for a typical triangle mesh. 

X P X PC

redundant vertex of CV frontier F  

Figure 6.5: Erosion of the redundant zone and frontier detection 

 103



Fast Geometric Matching for Surface Registration 

6.4.5 Gap filling 

The gap between the two surfaces X and PC is filled with 
triangles in order to join the two meshes. The different frontiers 
on PC delimiting these gaps are processed sequentially. The filling 
process is initialised for a frontier on PC with the search of the 
first vertex xN on the frontier of X. To do so, the first two 
vertices f0 and f1 of the frontier list F are selected and the 
nearest point xN to f0 and f1 on the frontier of X is calculated. 
Then, the first bridge triangle joining the two frontiers is 
constructed with the vertices xN, f0 and f1 as shown in Figure 
6.6. The frontier list F is updated by setting its first vertex f0 
equal to xN. 

The following algorithm fills the gap iteratively starting with 
the above initialisation. Two candidate vertices are selected to 
build the next bridge triangle. One is f2, the third vertex in the 
frontier list F and the other one is xC, the next vertex on the 
frontier of X. These two candidates form together with the 
vertices f0 and f1 of F the next potential bride triangles as shown 
in Figure 6.6. The candidate that encloses the maximal angle is 
selected in order to obtain a regular triangulation. The frontier 
list F is updated with the new vertices as follows: f0 is set equal 
to xC if xC is chosen or f1 is removed from F if the candidate f2 
is selected. The candidate selection starts again with the modified 
frontier list and the above procedure is applied until F contains 
only two vertices. 

The following deteriorations of the gap-filling algorithm have 
to be avoided. First, if the frontiers of the two surfaces diverge 
which results in a large gap or second if the bridge triangle 
normal is negative indicating a filling in the wrong direction. In 
these cases new candidates are calculated, the filling process is 
initialised with the next edge from the edge list or the filling is 
stopped. 
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Figure 6.6: Gap filling initialisation and iteration procedure 

 

Figure 6.7: Fusion result 
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6.5 Colour acquisition 

Beside geometry, colour data is essential to create a realistic 
model of an object: 3D models won't look realistic if only their 
geometrical aspect is taken into account; the appearance of an 
object is also important. Realistic appearance is obtained by 
assigning either a colour or a sub-image to each model mesh, 
respectively leading to a coloured or a texture-mapped object 
model. 

Range finders based on structured lighting permit an easy 
measurement of both colour and geometric information since they 
mainly uses a CCD camera and a projector to retrieve range 
data. In addition, the colour picture of the object that is provided 
by the camera is in perfect registration with the range image. 
Unfortunately, the colour components delivered by these scanners 
express the reflected colour intensity of the object and not its 
intrinsic colour as required for the object model. A consequence of 
this is therefore the existence on the reconstructed model of 
strong colour discontinuities, which appear on the boundaries of 
two object views because their acquisition was done under 
different illumination conditions. 

Two main reflectance types can be observed on a physical 
object: diffuse and specular. To account for it, we successively 
considered the Lambertian and then the Phong model. Three 
different approaches have been considered to obtain the desired 
intrinsic colour. 

The first one converts the reflected colour intensity into the 
intrinsic colour by computation. It operates with the projector of 
the range finder as only light source, and uses therefore the 
colour image as provided by the video camera of the 3D scanner. 
In order to compensate for varying light illumination, it uses a 
reflectance model and operates then on known illumination, 
camera and surface orientations to compute the compensation. 

The second approach aims at using a nearly constant, diffuse 
and omnidirectional illumination over the visible parts of the 
object. Creating such a uniform diffuse illumination around the 
object can be done with several white light sources that must be 
distributed as homogeneously as possible. 

Finally, the third method proceeds according to the first 
approach but tries additionally to get rid of specularities by using 
several known illumination sources. 
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Figure 6.8 presents a comparison of the methods applied to a 
round spray can. The diffuse reflections compensation can be seen 
using all three methods. Basically, the first two methods can’t do 
anything against specular reflections, which is annoying with very 
shiny objects. On the other hand, the multiple light compensation 
method shows to be useful here, the specular reflections being 
nearly invisible. 

A detailed description of the different algorithms as well as 
more results can be found in [Jos99] and [Hug00]. 

original color
image

1st method 2nd method 3rd method

 

Figure 6.8: Comparison of the methods applied to a spray can 

6.6 Handling textures 

An extension of our reconstruction method that applies to 
textured views has been presented in [Jos98]. Advantages 
compared to other approaches are the capability to handle 
textured views and the lower complexity of object reconstruction. 

The basic principle of the fusion of two views is to remove 
the overlapping part of one of the views, then to fill the resulting 
gap with new triangles and map them with the texture of the 
removed part. The resolution of the texture is checked to try to 
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keep the best texture resolution in each triangle. Finally, textures 
from the different views are blended at their boundaries to insure 
a smooth colour transition. 

The work about the handling of textures in object digitising is 
found in [Jos98] and an example of textured object obtained with 
the presented method is shown in Figure 6.11. 

6.7 Results, some models and applications 

Some examples of objects scanned with the presented system are 
shown in this chapter. At the same time, they illustrate some 
applications of such a digitising system. 

6.7.1 Reverse engineering 

Reverse engineering consists in recreating a CAD model of an 
existing prototype object so as to make a copy of the prototype or 
to put it into production. 

 

Figure 6.9: High resolution model of a watch frame 
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The presented example of reverse engineering modelling is a 
reconstruction of a watch frame. The goal of the work was to 
precisely measure the modified edges of the frame and then to 
update the existing original CAD model for mass production. In 
such case, high resolution is required to have a good precision. 
The resolution of this model is about 0.15mm. It contains 60000 
vertices and 115000 faces and required about 20 different views. 

6.7.2 Modelling from AFM images 

Some tests have been made to register and model micrometric or 
even nanometric objects, specifically small quartz particles 
measured with an AFM microscope. This is definitely a domain 
where calibration devices or markers are very hard to use and 
where shape registration is required. Figure 6.10 shows a 
triangulated surface and the extracted triangulated view of a 
measured quartz particle. The resolution of the mesh is about 10 
nm and it contains about 10000 points. A more complete 
publication of the research with AFM measurements and 
modelling can be found in [Jos01]. 

a.

b.

c.

 

Figure 6.10: Range image (a), triangulated surface (b) and extracted 
triangulated view (c) of a quartz particle 
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6.7.3 Various objects 

The first example, shown in Figure 6.11 is a texture-mapped 
model of a clay rabbit. This model was built using a decimation 
of the vertices and texture mapping. It permits to reduce the 
amount of data and to create a realistic looking model. The 
resolution of this model is about 2mm. It was reconstructed using 
8 views and contains about 4000 vertices and 7800 faces. This 
result is a typical example of a multimedia type model, used for 
online shopping for example, which requires a good appearance 
and low data size but where high geometric precision is not 
necessary. 

 

Figure 6.11: Textured model of a clay rabbit 

The last example is some coloured models of two bones, 
presented in Figure 6.12. The resolution of the models is about 
2mm. This example illustrates the use of virtual models for 
museums or in archaeology. Such models permit to study fragile 
objects under every angle without taking the risk of damaging 
the original. It also opens the possibility to easily examine objects 
to many people worldwide. 
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Figure 6.12: Coloured models of bones 

6.8 Chapter conclusion 

A complete digitising system that uses a new fusion algorithm 
has been presented in this chapter. It combines several range 
images to create a complete virtual model of an object. It 
considers triangulated views from unpositioned range images. The 
registration is separated into two steps, a first interactive rough 
positioning followed by an automatic matching using a variant of 
the ICP algorithm. The view fusion algorithm is coupled with 
registration, taking advantage of the closest point correspondences 
established during the automatic registration process. It keeps 
most of the existing view triangulation, removing redundant 
surfaces and linking remaining meshes together. 

Other aspects of the object digitising, like colour digitising or 
texture handling have been analysed and new algorithms have 
been proposed and implemented as well. Several objects have 
been scanned and results proved the presented system to be 
effective, be it for precise, high-resolution models or for realistic 
looking, textured models. 
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Chapter 7 
Conclusions 

The research presented in this Ph.D. report mainly addresses the 
problem of the acceleration of the iterative closest point (ICP) 
algorithm. 

The ICP algorithm is used for the registration of geometric 
data, which consists in finding the correct alignment of two or 
more datasets, based on their intrinsic properties. The working 
principle of the ICP consists in iteratively creating closest point 
correspondences between two sets of points and minimizing the 
average distance between both sets by a rigid transformation. 

The main practical difficulty of the ICP algorithm is that it 
requires heavy computations and, thus, several speeding up 
methods have been proposed. A fairly complete review of the 
different methods has been proposed in this work. The main 
conclusion of this review is that most of the existing solutions 
lead to a tradeoff between speeding up and the quality of the 
matching. 

A new closest points search algorithm for fast ICP has been 
presented. It consists of a heuristic that uses neighbourhood 
relationships to obtain a first approximation of the closest points 
and refines the results by a local search. Results showed that the 
proposed neighbour search algorithm performs significantly better 
than a k-D tree search, which is the standard fast closest point 
search. The theoretical complexity of O(Np) was practically 
reached. 
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The major drawback of the neighbour search is that the 
range of successful initial configuration tends to decrease when 
the resolution of the data increases. The main explanation of this 
problem is that the absolute size of the local search diminishes if 
the resolution of the data increases and the local search window 
remains the same. 

A multiresolution scheme applied to the ICP has been 
proposed and analysed. This multiresolution scheme proceeds from 
coarse to fine and successively improves a previous solution at 
the finer representation level. Under these circumstances, the 
results show large speedup gains that can reach the best 
theoretical expectations. Combining the multiresolution scheme 
with the neighbour search presented above can lead to gains of 
more than 1600 over a non-accelerated ICP. Furthermore, the 
pure speedup potential of this combination goes together with 
improvements observed with respect to the convergence speed and 
the matching quality. Practically, multiresolution permits to fully 
eliminate the decrease of matching quality that can appear when 
using the neighbour search. Consequently, this combination 
permits to create a very fast ICP algorithm while avoiding a 
tradeoff between speedup and quality of the matching. 

Finally, a complete digitising system has been built during 
the course of this research and is presented at the end of this 
report. It combines data from several unpositioned range images 
to create a complete virtual model of an object and uses a new 
fusion algorithm working on triangulated views. The registration 
is separated into two steps, a first interactive rough positioning 
followed by an automatic matching using a variant of the ICP 
algorithm. 

Other aspects of the object digitising, like colour digitising or 
texture handling have been analysed and implemented. Several 
objects have been scanned and the results proved the presented 
system to be effective, be it for precise, high-resolution models or 
for realistic looking, textured models. 

7.1 Possible extension and future work 

The square zone local search is basic and simple but a smarter 
local search method could be considered later on. A steepest 
descent or a local 3 steps algorithm (coarse to fine), for example, 
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could both diminish the number of local searches and augment 
the exactness of the result. 

The algorithm was mainly tested with range images but it 
extends to cloud of points where the neighbourhood relation 
exists. One of the next steps could be to actually implement the 
neighbour search for clouds of points and triangle meshes to 
assess its usability in this case. 

When datasets are getting close together, the resulting rigid 
transformation is getting smaller at each iteration. If it is 
sufficiently small, we could consider using the correspondences of 
the previous iterations as a first approximation when a point 
possesses no valid neighbour or even for every points. 

In this work, we only considered the registration of two 
datasets. Adapting a global registration, to register several 
datasets at once, with the multiresolution scheme and neighbour 
search could be interesting to decrease the propagation of errors 
that happens when matching datasets sequentially. 

Finally, one of the challenge of object digitising concerns 
edges. The objects used in industry often have sharp edges. The 
scanning and reconstruction of such surfaces lead to new 
problems that are not fully solved yet. 
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