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Abstract 

The iterative closest point (ICP) algorithm is widely 
used for the registration of 3D geometric data. One of the 
main drawbacks of the algorithm is its quadratic time 
complexity O(N2) with the number of points N. 
Consequently, several methods have been proposed to 
accelerate the process. This paper presents a new 
solution for the speeding up of the ICP algorithm and 
special care is taken to avoid any tradeoff with the quality 
of the registration. The proposed solution combines a 
coarse to fine multiresolution approach with the neighbor 
search algorithm. The multiresolution approach permits 
to successively improve the registration using finer levels 
of representation and the neighbor search algorithm 
speeds up the closest point search by using a heuristic 
approach. Both multiresolution scheme and neighbor 
search algorithm main features are presented in this 
paper. Confirming the success of the proposed solution, 
typical results show that this combination permits to 
create a very fast ICP algorithm, with a closest point 
search complexity of O(N), while preserving the matching 
quality. 

1. Introduction 

The geometric matching of 3D datasets consists in 
finding their correct relative alignment based on their 
intrinsic properties. Typical applications using registration 
as part of their working principle include the modeling of 
3D objects, object recognition or quality inspection. 

The iterative closest point (ICP) algorithm [2] figures 
among the principal and widely used low-level 
registration methods. Starting from an initial rough 
alignment of the data, the ICP processes iteratively. At 
each iteration, it first creates closest point 
correspondences between two sets of points (or more 
generally geometric data) and then minimizes the average 
distance of the previously found correspondences by a 
rigid transformation - a translation and a rotation. 

The main practical difficulty of the ICP algorithm is 
that it requires heavy computations. When working with 
clouds of points or triangulated meshes, the complexity of 
the original algorithm is O(NpNx), where Np and Nx 
represent the number of points of the clouds to be 
matched. Consequently, matching high-resolution shapes 
can take a lot of time, even on current computers, and 
there is a need for ways to reduce the ICP computation 
time. 

A review of the main solutions to speed up the ICP is 
presented in the next chapter. The main trouble 
encountered is that existing solutions often create a 
tradeoff between the speeding up and the quality of the 
registration – as measured i.e. by an increased registration 
error and/or a reduced range of successful initial 
configurations [8]. 

A new solution to accelerate the ICP is presented in 
this paper. In fact, it consists in the combination of two 
recently proposed methods to speed up the ICP. First of 
all, the neighbor search algorithm [9], which relies on 
neighborhood relationships in the data to restrict the 
search of the closest point to a local subset. Then, a multi-
resolution scheme [10] that proceeds from coarse to fine 
and successively improves a previous solution at the finer 
representation level. This solution for the speeding up of 
the ICP has been developed in a perspective to avoid the 
tradeoff with the registration quality that was mentioned 
above. 

This document is organized as follows. The next 
section presents the basic ICP algorithm and its principal 
variants and reviews the associated acceleration methods. 
Section 3 and 4 briefly describe the key points of the 
neighbor search algorithm and the multiresolution scheme 
ICP. An experimental comparison of the proposed 
algorithm with existing methods is presented in section 5. 
Finally, conclusions can be found in section 6. 

2. Fast registration with ICP 

The ICP algorithm registers two sets of points, P and X 
composed of respectively Np and Nx points, starting from 
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an initial pose estimation. The algorithm proceeds 
iteratively. It first pairs every point of P with its closest 
point of X. These pairs are used to compute the rigid 
transformation (R, t) which, when applied to P, 
minimizes the coupling error e of the two data sets. The 
resulting transformation is then applied to set P and the 
iteration continues until a defined stopping criterion is 
fulfilled. 

Different variants of the ICP algorithm exist that 
improve the matching quality and the robustness of the 
registration. Chen and Medioni [5] proposed a similar 
algorithm where couplings are made between points of 
one surface and planes parallel to the other surface. 
Several authors proposed to weight the point couplings 
[16] [17] in order to make the ICP algorithm more robust 
to the outliers that typically appear when registering 
shapes of different sizes or when data sets overlap each 
other only partially. 

Others authors also suggested to use additional 
features, such as surface normals [4] or surface colors 
[14], to define point closeness or distance, in order to 
improve the quality of the registration. The ensuing ICP 
algorithm then requires less iterations for converging to a 
better position and it also improves the range of 
successful initial configurations [14]. A review of the 
different variants can be found in [13]. 

Given ( )xp ,d k  the function that measures the distance 
between a pair of points from the two sets, 

X , P ∈∈ xp k , one iteration of the algorithm can be 
summarized as follows: 

1. Compute closest points: 
( ){ }min,d  X , P =∈=∈∀ xpxp kkk x  

2. Weight the couplings: define a wk for each couple 

3. Compute the best transformation, i.e. the rotation R 
and translation t that minimize 

( ) 2

Np

1, ∑ −+= kk xtRptR kw
W

e , ∑=
pN

kwW  

4. Apply transformation (R, t) to P 

These steps are iterated and the algorithm stops when a 
defined criterion is reached, for example when the change 
in the coupling error e falls below a threshold: 

τ<−− ii ee 1  or when the resulting best transformation is 
closer to identity than a threshold. 

2.1. Fast ICP algorithms 

The first step of the algorithm, closest point 
computation, has a complexity of O(NpNx), while steps 2 
to 4 possess a complexity of O(Np). Consequently, the 
complexity of the ICP algorithm is O(NpNx) and, for large 
data sets, most of the time is spent for closest point 
computation. 

Many solutions for the acceleration of the ICP 
algorithm have been proposed. Langis [12] recently 
proposed a parallel implementation of the ICP and 
showed that a nearly linear performance improvement 
with the number of processors can be obtained with up to 
16 processors. Beside this hardware-oriented solution, one 
can separate the different methods into three main classes: 
reduction of the number of iterations n, reduction of the 
number of data points Np and Nx and acceleration of the 
closest points computation. A review of the different 
methods and their results are given in the next paragraphs. 

2.1.1. Reducing the number of iteration n. In his 
original publication, Besl [2] proposed a variation named 
"accelerated ICP". It uses a linear or quadratic 
extrapolation of the registration parameters to reduce the 
number of iterations. Simon [15] later proposed to 
decouple rotation and translation in the accelerated ICP 
to reduce the number of iterations further more. Typical 
results from these authors showed "accelerated ICP" and 
"decoupled" version to reduce computation time by a 
factor of 3 and 4.5 respectively. 

Rusinkiewicz [13] recently proposed a review of the 
influence of many variants of the ICP (as presented 
above) on the number of iterations. Most of them were 
shown to only have a marginal influence on it. 

2.1.2. Reducing the number of data points Np and Nx. 
Another way to reduce computation time is to reduce the 
number of points involved in the computation of closest 
points and best transformation. Some authors proposed to 
use a coarse to fine strategy. They execute the first 
iterations using a lower resolution, like 1/4 or 1/5 of the 
points, and finish with fine matching using full resolution 
[16][17]. In this case, the acceleration is greatly 
dependent on the number of iterations performed at the 
different resolutions. So far, few results have been 
published concerning multi resolution strategy. Zhang 
[17] found a reduction factor of about 2 to 4. 

Chen and Medioni [5] proposed to use only subsets of 
the data named control points. As such, they suggested 
using points sitting in smooth areas, because normals and 
line plan intersections are more reliable in that case. This 
argument is valid when using point to plan distances but 
is of less importance for the ICP algorithm where point-
to-point distances are calculated. Other ways of choosing 
control points have also been proposed. Brett [4] applies 
an alternate mesh reduction algorithm to triangulated 
surfaces that keeps significant features (high curvature) 
and iteratively matches a reduced P mesh with X then a 
reduced X mesh with P. A pure random choice, an even 
distribution of the normals [13] or a generalized feature-
oriented random sampling [6] are among other possible 
choice schemes. 



2.1.3. Speeding up the closest point computation. The 
acceleration of the closest point search can be done using 
either search structures or projection methods. Search 
structures, like the k-D tree [17] or the spherical triangle 
constraint nearest neighbor (STCNN) [7], permit to 
accelerate the search by restricting it to a subpart of the 
data. This allows to reduce the complexity of the closest 
point search – and of the ICP - to O(Np log Nx) with a k-D 
tree and up to a best case O(Np) with the STCNN. 

The goal of projection methods is to speed up the 
closest point search by projecting points into one or more 
planes, reducing the problem to a 2D search. If scanner 
parameters are known, the reverse calibration [3] consists 
in projecting the points of one dataset into the range 
image of the second one, in the direction of the range 
camera. Projection in multiple Z-buffers [1] is another 
solution. Both these methods permits to reduce the 
complexity up to O(Np). 

2.2. Discussion 

An in-depth review and comparison of the different 
methods can be found in [11] but here are the main points 
that we retained from it. 

Using the extrapolation of parameters, a reduction of 
the computation time by a factor of 3 or 4 can be expected 
but at the risk of overshoot. The latter could at best 
eliminate the beneficial effect of the method but it could 
also cause the algorithm to converge toward a bad local 
minimum, which would be annoying. 

Using control points imply a reduction of the 
computation time linked with the number of control 
points. The less control points used, the better the 
acceleration of the ICP. On the other hand, the method 
chosen to select the points can have a negative impact on 
the computation time of the registration. Less control 
points also means a bigger registration error and, in this 
perspective, a coarse to fine approach would be preferred. 

Search structure and projection method allow to reduce 
the complexity – theoretically up to O(Np) - and 
consequently have the best impact on the computation 
time of the ICP algorithm. For example, Zhang [17] 
obtained a time reduction factor of about 15 for meshes 
containing about 2500 points when using a k-D tree and it 
should increases with the number of points. The main 
problem with search structures is that they lose a lot of 
their speeding up advantages when datasets are far from 
each other, which is generally the case in the first 
iterations of the ICP, and when additional features are 
used to define the closest point, which is useful to make 
the ICP more robust. 

Finally, projection methods permit a very good 
speeding up of the closest point search. On the other hand, 
they only give approximations of the closest points, 
especially when datasets are only coarsely aligned, and 
are not very adapted to the use of additional features. This 

can lead to bad matching and, consequently, the range of 
successful initial configurations tends to be much smaller 
when using these methods. 

One can note here that all three types of acceleration 
methods are quite independent and consequently can be 
combined together. For example, Simon [15] mixed 
accelerated ICP with k-D tree and Zhang [17] used both 
coarse to fine strategy and k-D tree. Our solution, 
presented in the next section, also combines a coarse to 
fine strategy with a fast closest point search. 

As our main conclusion, the analysis of the literature 
shows that most of the existing solutions lead to a tradeoff 
between the actual speeding up and the quality of the 
registration – i.e. registration error and range of successful 
initial configurations [8]. 

3. The neighbor search algorithm 

The neighbor search algorithm [9] assumes the 
existence of a neighborhood relationship between the two 
sets of points P and X. Given that there exist 
neighborhoods V and V’ defined in respectively datasets 
P and X, the relationship hypothesis is that two neighbors 
in a data set possess closest points that are neighbors in 
the other data set. Formally, the principle of this 
neighborhood relationship is exposed in Figure 1: given a 
point pk in data set P and its corresponding closest point 
xk in data set X, the closest point xi of pi, if pk belongs to 
neighborhood V of pi, V(pi), is found in the neighborhood 
V’ of xk, V’(xk). 
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Figure 1. The neighborhood relationship assumption 

The proposed idea towards a faster search is to use 
good approximations of the closest points instead of exact 
closest points. The neighborhood relationship is used to 
get a first approximation of the closest point and, then, a 
local search can be performed to refine the result instead 
of an exhaustive (or global) one: if pi possesses a 
neighbor pk in data set P, with a know closest point xk in 
data set X, finding the closest point of pi can be reduced to 
searching the closest point in the neighborhood V’ of xk, 
V’(xk). 

The following pseudo-code formulates the closest 
point neighbor search algorithm: 



input: datasets P and X, with associated 
neighborhood, V(P) and V’(X) 

output: for each pi of P, an approximation xi 
of its closest point in X 

procedure  neighbor_closest_point_search (P, X) 

for (each pi of P) do 

if ( ( )ikk ppx V of point closest  ∈∃ ) then 

xi = local_closest_point (pi, V’(xk)) 

else 

xi = global_closest_point (pi, X) 

It appears that for each point pi, the closest point 
search is performed either in the full set X or only in the 
neighborhood V’(xk), depending whether at least one 
neighbor of pi has already a known closest point or not. 
Formally, this closest point search algorithm has therefore 
a theoretical best-case complexity of O(Np), if a local 
search can be performed in each case, and a worst case 
complexity equal to the one of the global search. One can 
note that a basic fast search method, such as a k-D tree, 
can be used for the global search. 

Of course, the order in which points pi of P are 
scanned is important. Using a random method is a bad 
idea, as it would create a high number of global searches 
and push complexity toward the worst case. 
Consequently, the basic idea is to scan points using a 
diffusion method, so that the next point pi is chosen in the 
neighborhood of the points that already have a known 
neighbor. 

3.1. Algorithm applied to range images 

When considering range images, each point possesses 
either 4 or 8 direct neighbours (except points on borders), 
depending on the considered topology (V-4 or V-8 
neighbourhood). A very basic but effective algorithm is 
considered here. Neighbourhood V is the 3x3 window 
surrounding the point pi in P (V-8 neighbourhood) and 
neighbourhood V’ is a nxn window in X. We choose to 
scan the points of range image P row by row, starting 
from upper left. That way, the possible direct neighbours 
of pi with a known closest point pk can be found on the 
previous point in the same row and in the previous row 
(see image P on Figure 2). Those 4 possible candidates 
are just checked sequentially and the first one that 
possesses a known closest point is chosen as pk. 
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Figure 2. The neighbor search in range images 

Normally, any of the candidate neighbors possesses a 
known closest point, except for the first scanned point and 
in case of missing data points. 

Once pk and its corresponding closest point xk are 
known, the local closest point search of pi is done in a 
square neighborhood zone of size nxn, centered on the 
approximation xk (see image X in Figure 2). If no point pk 
can be found, the global search is performed in X using a 
k-D tree search, as suggested previously. 

4. Multiresolution scheme 

The principle of the multiresolution ICP is to make the 
first few iterations using down sampled data and to 
further increase the resolution of the data in the following 
iterations, creating a coarse to fine matching. The main 
expected advantage of the multiresolution is the reduction 
of the computational cost, given that the duration of each 
iteration made at lower resolutions is reduced. The 
precision of the final matching is expected to be the same 
as when using all the points for the whole registration. In 
addition, we expect the total number of iterations not to 
be higher than in the “monoresolution” case. 
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Figure 3. The multiresolution ICP principle 

4.1. Chosen multiresolution pattern 

The multiresolution coarse to fine strategy is not a new 
concept and has been widely used in image processing 
and other domains for years. A few publications (as seen 
in the introduction) also briefly presented some coarse to 
fine solutions applied to ICP. 

The pattern we chose has been presented in [10]. It 
consists in dividing the number of points by a factor N for 
each resolution step. The lowest possible resolution is 
defined by keeping the number of points of the reduced 
data sets above a minimum value (typically 50 or 100). 

The number of iterations at each resolution step isn’t 
set. Instead, the algorithm goes to the next resolution step 
automatically when a defined stop criterion is reached at 



the current one (Figure 3). A complete analysis of the 
presented scheme can be found in [11]. 

4.2. Multiresolution neighbor search algorithm 

Both multiresolution scheme and neighbor search are 
quite independent and consequently can be combined 
together. Such a combination should permit to create a 
very fast ICP algorithm and the following remarks can be 
done. 

In the case of the neighbor search, the reduction of data 
set X doesn’t have a big influence on the cost given that it 
has a best-case complexity of O(Np). However we can 
note that in practice, data set X needs to be reduced as 
well in order that the relative size of the local search area 
stays the same. 

A complete analysis of the proposed multiresolution 
scheme can be found in [11]. To estimate the numerical 
value of the gain in speed G(Np) of a multiresolution case 
in relation to a full resolution case, we made the 
hypothesis that the total number of iterations remains the 
same in both cases. We also distinguished 3 cases on how 
iterations are distributed for each step: 

1. a constant number of iterations at each step 

2. an increasing number of iterations with the higher 
resolutions 

3. a decreasing number of iterations with the higher 
resolutions. 

These different cases can be seen as average (1), worst 
(2) and best (3) theoretical cases. Figure 4 presents a 
graphical representation of these estimates as a function 
of Np. One can see that the bigger the datasets, the higher 
the expected gain is. 
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Figure 4. Expected multiresolution gains G(Np) for fast 
ICP algorithms, for N= 4 

Besides its pure speeding up potential linked to the 
reduction of the number of points, the multiresolution 
matching scheme is expected to have an added beneficial 
impact on the neighbor search method. When using the 
neighbor search algorithm, higher resolutions tend to 
decrease the exactness of the closest points pairing, 

especially on coarse misalignment of the datasets, which 
typically reduces the range of successful initial 
configurations (SIC). This effect can be seen in Figure 5 
in the next section. Using a lower resolution for the initial 
iterations, when the misalignment is coarse, should permit 
to avoid this problem since the registration of lower 
resolution datasets possess the best SIC range. 

5. Experimental results 

The presented fast ICP algorithm has been tested on 
different data and compared with other fast ICP 
algorithms using tree search and neighbor search alone. 
The comparison focuses on two features: matching 
quality and computation speed. The expected goal is, as 
said before, to speed up the algorithm while keeping the 
same quality of the matching. 

The following typical results have been obtained using 
overlapping surfaces of a duck toy measured with a 
structured light range finder. The overlap is 
approximately 35% of the surfaces and the datasets 
contain about 25000 to 30000 points. Beside the 
modifications presented above, our ICP algorithm uses 
the normals in the distance computation [14], 2 fixed 
thresholds depending of the resolution of the data to get 
rid of outliers and a balanced k-D tree search similar to 
the one proposed by Zhang [17]. 

5.1. Matching quality 

Two measures can be considered to examine the 
quality of the matching procedure: the matching error and 
the domain of convergence. To compare the matching 
error, the resulting positioning of the successful 
registration has to be the same or at least in the same error 
range as when matching using exact closest points. It was 
the case with all the methods used in this chapter. 

To examine the domain of convergence, we used a 
method presented in [8] that compares the domains of 
successful initial configurations (SIC) and present the 
results in SIC-maps. Basically, the SIC-map represents by 
black sectors the range of successful initial configurations 
of two datasets to be matched relative to a three-
dimensional angular misalignment (ϕ, θ, ω space) of the 
datasets. Consequently, the more black sectors in a SIC-
map, the bigger the SIC range (or domain) is. 

As mentioned previously, the neighbor search 
algorithm uses a heuristic closest point search to improve 
matching speed. This means that the exactness of the 
matching decreases when datasets are further apart and 
when their resolution is bigger. As a consequence, coarser 
initial alignments that previously lead to a successful 
convergence may not converge correctly anymore and, 
thus, the SIC range tends to get smaller when higher 
resolution data are used, as shown in the SIC-maps of 



Figure 5. This is something we want to avoid thank to the 
multiresolution scheme. 

6000 pts. 1500 pts. 350 pts.
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Figure 5. SIC-maps using a 9x9 neighbor search for 
different data resolution 

Figure 6 compares the SIC-maps obtained using a k-D 
tree search ICP, the neighbor search accelerated ICP and 
their multiresolution variants. The results first show that 
multiresolution does not affect the domain of successful 
convergence when coupled with a k-D tree search, since 
the SIC range remains nearly the same in both cases. 
Furthermore, it has the expected beneficial effect on it 
when coupled with the neighbor search. More precisely, 
one can see that the multiresolution scheme permits to 
maintain the SIC range of the ICP when combined with 
the neighbor search. 

n-search MR n-search

MR k-D treek-D tree

 

Figure 6. SIC-maps obtained using the different fast 
ICP methods (n-search=neighbor search, MR = multi-
resolution) 

All in all, these results confirm that the multiresolution 
scheme does not affect the matching quality for both the 
matching error and the domain of convergence. 
Furthermore, it has beneficial effects on the SIC range, 
especially when combined with the neighbor search 
algorithm. 

5.2. Computation speed 

Figure 7 graphically presents the average closest point 
computation time per point of P, tp, as a function of Nx. 
Two values of k-D tree time are given at each resolution, 
a minimal time and a maximal time. This is to reflect the 
difference in the computation time depending on the 
distance between both data sets when using a k-D tree. 
Basically, the tree search is longer when data sets are 
farther from each other. The min / max values must be 
considered as a best-case / worst-case type of measure. 

One can observe that the theoretical complexity O(Np) 
was practically reached for the neighbor search since 
tp~const. For k-D tree, one can see that tp~logNx, which 
follows the theoretical complexity O(Np logNx). The gain 
in speed lies typically between 2 and 5 over a best-case k-
D tree. Considering the worst-case tree search values, the 
gain can go up to 13 times! 
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Figure 7. Average closest point computation time per 
point of P, tp(Nx), for the n-search and k-D tree 

Figure 8 presents a comparison of the average gains in 
the computation time of the successful registrations, using 
the different acceleration methods. One can see that the 
multiresolution and neighbor search combination is more 
than 25 times faster than using a k-D tree search fast ICP 
and 1500 faster than a non-accelerated ICP. 
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Figure 8. Comparison of the average gains in the 
computation time of the registration using the 
different acceleration methods 



These results are also expected to become higher for 
bigger data sets, due to the smaller complexity (O(Np)) of 
the neighbor search algorithm. 

Considering the impact of the sole multiresolution 
scheme, it permits to reduce the total registration time by 
an average factor of about 9 in the presented case. 
Practically, the number of iterations is effectively 
decreasing with the higher resolutions steps, although not 
as much as the best theoretical case. On the other hand, 
the total number of iterations is slightly reduced – 
typically 10 to 20% less iterations -, which was not taken 
into account in the theoretical case [11]. All in all, the 
results are basically similar to the theoretical best-case 
gain shown in Figure 4 (case 3). 

6. Conclusion 

This paper proposes a solution to the speeding up of 
the ICP algorithm that combines a heuristic closest point 
search algorithm with a multiresolution scheme. A review 
of existing solutions showed that most of them imply a 
tradeoff between the gained acceleration and the quality 
of the resulting matching. Our goal is to obtain a fast but 
also robust ICP algorithm, both in terms of resulting 
alignment error and range of successful initial 
configuration. 

The presented ICP algorithm combines the use of the 
neighbor search algorithm with a multiresolution scheme. 
The neighbor search uses the assumption that two 
neighbors on a surface possess closest points that are 
neighbors on the other surface to easily obtain a first 
approximation of the closest point and then proceeds with 
a local search to refine the result. The chosen 
multiresolution scheme proceeds from coarse to fine and 
successively improves a previous solution at the finer 
representation level. This combination allows obtaining a 
very fast and robust registration of two datasets. 

More precisely, experimental results obtained with 
typical datasets showed that when combining 
multiresolution with the neighbor search method, the 
registration is up to around 25 times faster than when 
using a tree search, which represents a gain of more than 
1600 over a non-accelerated ICP algorithm. The speedup 
gain is also expected to be higher for bigger data sets, due 
to the smaller complexity (O(Np)) of the neighbor search 
algorithm. Moreover, the multiresolution scheme permits 
to maintain the range of successful initial configurations, 
as well as the registration error of the ICP, unchanged. 
This clearly shows that the proposed fast ICP algorithm 
exploits the fundamental nature of shape registration to 
substantially contribute to improve its computation. 

Finally, the neighbor search principle was applied to 
range images in this work but the concept can be extended 
to three-dimensional polygonal meshes or point sets in the 
future. 
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