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Abstract. Visual attention is the ability of a vision system, be it bio-
logical or artificial, to rapidly detect potentially relevant parts of a visual
scene. The saliency-based model of visual attention is widely used to sim-
ulate this visual mechanism on computers. Though biologically inspired,
this model has been only partially assessed in comparison with human
behavior. The research described in this paper aims at assessing its per-
formance in the case of natural scenes, i.e. real 3D color scenes. The
evaluation is based on the comparison of computer saliency maps with
human visual attention derived from fixation patterns while subjects are
looking at the scenes. The paper presents a number of experiments in-
volving natural scenes and computer models differing by their capacity
to deal with color and depth. The results point on the large range of
scene specific performance variations and provide typical quantitative
performance values for models of different complexity.

1 Introduction

Visual attention is the ability of a system, be it biological or artificial, to analyze
a visual scene and rapidly detect potentially relevant parts on which higher level
vision tasks, such as object recognition, can focus. On one hand, artificial visual
attention exists as the implementation of a model on the computer. On the
other hand, biological visual attention can be read from human eye movements.
Therefore, the research presented in this paper aims at assessing the performance
of various models of visual attention by comparing the human and computer
behaviors.

It is generally agreed nowadays that under normal circumstances human eye
movements are tightly coupled to visual attention. This can be partially ex-
plained by the anatomical structure of the human retina. Thanks to the avail-
ability of sophisticated eye tracking technologies, several recent works have con-
firmed this link between visual attention and eye movements [1, 2, 3]. Thus, eye
movement recording is a suitable means for studying the temporal and spatial
deployment of visual attention in most situations.
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In artificial vision, the paradigm of visual attention has been widely inves-
tigated during the last two decades, and numerous computational models of
visual attention have been suggested. A review on existing computational mod-
els of visual attention is available in [4]. The saliency-based model proposed in
[5] is now widely used in numerous software and hardware implementations [6, 7]
and applied in various fields.

However, and despite the fact that it is inspired by psychophysical studies,
only few works have addressed the biological plausibility of the saliency-based
model [8]. Parkhurst et al [9] presented for the first time a quantitative compar-
ison between the computational model and human visual attention. Using eye
movement recording techniques to measure human visual attention, the authors
report a relatively high correlation between human attention and the saliency
map, especially when the images are presented for a relatively short time of few
seconds. Jost et al [10] run similar experiments on a much larger number of test
persons and could measure the quantitative improvement of the model when
chromaticity channels are added to the conventional monochrome video chan-
nels. Visual attention in 3D scenes was first considered in [11] and recently, a
visual attention model for 3D was quantitatively analyzed in presence of various
synthetic and natural scenes [12].

This paper presents a more global analysis, where the performance of a family
of visual attention models in presence of 3D color scenes is evaluated. The basic
motivation is to get insight into the contribution of the various channels like
color and depth. Another motivation is to assess possible improvements when
artificial visual attention is made more complex.

The remainder of this paper is organized as follows. Chapter 2 recalls basics
of the saliency models. Chapter 3 presents the methods for acquiring the human
fixation patterns and comparing them to the saliency map. Chapter 4 details the
experiments and obtained results. A general conclusion follows in Chapter 5.

2 Saliency Models

The saliency-based visual attention [5] operates on the input image and starts
with extracting a number of features from the scene, such as intensity, orientation
chromaticity, and range. Each of the extracted features gives rise to a conspicuity
map which highlights conspicuous parts of the image according to this specific
feature. The conspicuity maps are then combined into a final map of attention
named saliency map, which topographically encodes stimulus saliency at every
location of the scene. Note that the model is purely data-driven and does not
require any a priori knowledge of the scene.

2.1 Feature and Conspicuity Maps

From a scene defined by a color image (R,G,B) and a range image Z, a number
of features Fj are extracted as follows:
Intensity feature F1 = I = 0.3 · R + 0.59 · G + 0.11 · B.
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Four features F2, F3, F4, F5 for the local orientation according to the angles θ ∈
{0o, 45o, 90o, 135o}.
Two chromaticity features F6, F7 based on the two color opponency components
R+G− and B+Y − defined with the help of the yellow component Y as follows:

Y =
R + G

2
F6 =

R − G

I
F7 =

B − Y

I
(1)

Depth feature represented by a depth map F8 = Z.
Each feature map is then transformed into its conspicuity map Cj which high-
lights the parts of the scene that strongly differ, according to the feature speci-
ficity, from their surroundings. The computation of the conspicuity maps noted
Cj = T (Fj) relies on the center-surround mechanism, a multiscale approach and
a normalization and summation step during which, the maps from each scale are
combined, in a competitive way, into the feature-related conspicuity map Cj .

2.2 Cue Maps

Given the nature of the different features, the model groups together conspicuities
belonging to the same category and we define cue conspicuity maps for intensity
(int), orientation (orient), chromaticity (chrom.) and range as follows:

Ĉint = C1; Ĉorient =
∑

j∈{2,3,4,5}
N(Cj); Ĉchrom =

∑

j∈{6,7}
N(Cj); Ĉrange = C8

(2)
where N(.) is a normalization operator which simulates the competition between
the different channels. A detailed description of the normalization strategy is
given in [6].

2.3 Saliency Map

Finally, the cue maps are integrated, in a competitive manner, into a universal
saliency map S as follows:

S =
∑

cue

N(Ĉcue) (3)

More specifically, in this study we work with three alternative saliency maps
of in-creasing complexity, namely:

– A greyscale saliency map Sgrey that includes intensity and orientation: Sgrey =
N(Ĉint) + N(Ĉorient).

– A color saliency map Scolor that includes intensity, orientation and chro-
maticity: Scolor = N(Ĉint) + N(Ĉorient) + N(Ĉchrom).

– A depth saliency map Sdepth that includes intensity, orientation, chromaticity
and range: Sdepth = N(Ĉint) + N(Ĉorient) + N(Ĉchrom) + N(Ĉrange).
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3 Comparing Computer and Human Visual Attention

The evaluation principle illustrated in figure 1 is based on the comparison of
the computed saliency map with human visual attention. Under the assumption
that under most circumstances, human visual attention and eye movements are
tightly coupled, the deployment of visual attention is experimentally derived
from the spatial pattern of fixations.

Fig. 1. Comparison of computer and human visual attention

3.1 Eye Movement and Fixation Pattern Recording

Eye movements were recorded with an infrared video-based tracking system
(Eye-LinkTM ). It has a temporal resolution of 250 Hz, a spatial resolution of
0.01o, and a gaze-position accuracy relative to the stimulus position of 0.5o −
1.0o, largely dependent on subjects’ fixation accuracy during calibration. As the
system incorporates a head movement compensation, a chin rest was sufficient
to reduce head movements and ensure constant viewing distance.

A considerable challenge of this research has been to record eye movements
while a subject is watching a stereo image. It was made possible with the use of
an autostereoscopic display. It avoids using glasses on the subject, which would
prevent eye movement tracking. The images were presented in blocks of 10. Each
image block was preceded by a 3 × 3 point grid calibration scheme. The images
were presented in a dimly lit room on the autostereoscopic 18.1” CRT display
(DTI 2018XLQ) with a resolution (in stereo mode) of 640 × 1024, 24 bit color
depth, and a refresh rate of 85 Hz. Active screen size was 36 × 28.5 cm and
viewing distance 75 cm, resulting in a viewing angle of 29 × 22o. Every image
was shown for 5 seconds, preceded by a center fixation display of 1.5 seconds.
Image viewing was embedded in a recognition task.

Eye monitoring was conducted on-line throughout the blocks. The eye track-
ing data was parsed for fixations and saccades in real time, using parsing pa-
rameters proven to be useful for cognitive research thanks to the reduction of
detected microsaccades and short fixations (< 100 ms). Remaining saccades with
amplitudes less than 20 pixels (0.75o visual angle) as well as fixations shorter
than 120 ms were discarded after-wards [10].
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For every image and each subject i, the measurements yielded an eye trajec-
tory T i composed of the coordinates of the successive fixations fk, expressed as
image coordinates (xk, yk):

T i = (f i
1, f

i
2, f

i
3, ...) (4)

3.2 Score s

The score s is used as a metric to compare human fixations and computer saliency
maps. Also called chance-adjusted saliency by Parkhurst et al. [9], the score s
corresponds to the difference of average values of two sets of samples from the
computer saliency map S(x). Formally:

s =
1
N

∑

fk∈T

S(fk) − µS (5)

The first term corresponds to the average value of N fixations fk from an eye
trajectory T i . The second term µS is the saliency map average value. Thus the
score measures the excess of salience found at the fixation points with respect to
arbitrary points. If the human fixations are focused on the more salient points in
the saliency map, which we expect, the score should be positive. Furthermore,
the better the model, the higher the probability to reach the points with highest
saliency and the higher this score should be.

4 Experiments and Results

The experimental process was divided into two parts. A first part is devoted
to the measurement of visual attention induced by 2D images. A second part
compares human visual attention in presence of 3D color scenes.

4.1 Dataset 2D

This dataset consists of 41 color images containing a mix of natural scenes, frac-
tals, and abstract art images (see figure 2). Most of the images (36) were shown
to 20 subjects. As stated above, these images were presented to the subjects for
5 seconds apiece, resulting in an average of 290 fixations per image.

4.2 Dataset 3D

This dataset consists of 12 3D scenes representing quite general natural scenes.
Each scene is represented by a stereo image pair. Figure 3 presents sample images
from this dataset. These image pairs were presented to 20 different subjects for
5 seconds apiece, resulting in an average of 290 fixations per image.



474 H. Hügli, T. Jost, and N. Ouerhani

Fig. 2. images from the dataset 2D, ranked by score for the color model

Fig. 3. Sample scenes from the dataset 3D

4.3 Performance in Presence of 2D Images

For all images of dataset 2D, we created a greyscale saliency map Sgrey and a
color saliency map Scolor, both normalized to the same dynamic range. Then, a
comparison of these two models with the whole set of human fixation patterns
was performed in order to obtain the respective scores. Note that the score s
was computed taking the first 5 fixations of each subject into account, since it
has been suggested that, with regard to human observers, initial fixations are
controlled mainly in a bottom-up manner [10].

Figure 4 shows the scores for the different individual images. The main obser-
vation here is that the resulting scores are widely spread in their value, covering
the range [-7 .. 115]. The values show the model performance depends in a strong
way on the kind of image. To illustrate these results and explain somehow these
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Fig. 4. Individual scores for images of dataset 2D, both for the greyscale and color
models

strong variations, we refer to figure 2 showing sample images from the dataset
2D. There, the images are ordered according to the score Scolor obtained by each
image. The image yielding the best results is top left. The score decreases from
left to right and top to bottom. It is apparent that the images found on the
top row generally contain few and strong salient features, such as the fish, the
small house or the water lily. They yield the best results. On the other hand,
images that lack highly salient features, such as the abstract art or the fractal
images on the bottom row, result in much lower scores. Here, the model loses its
effectiveness in the single image (out of 41) yielding a negative score.

Referring to performance of the models, it is expected that the color model
performs better because it includes the additional chromaticity cue. We therefore
expect the score for the color model to be at least as good as the score of the
greyscale model. Although this is not true for all images it is the case for a
majority of about 85% of the cases.

A general comparison is given in table 1 showing the estimated average model
scores. The standard error was computed using the variance from both random
picks and human fixations means. The main observation is that the color model
fares better than the greyscale one. More specifically, the color model yields
an average score 25.8% higher than the greyscale model. This underlines the

Table 1. Scores of the greyscale and color models

score s

greyscale model Sgrey 24.8 ± 1.2

color model Scolor 31.2 ± 1.1
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usefulness of the chromaticity cue in the model and goes toward assessing that
this cue has a considerable influence on visual attention.

4.4 Performance in Presence of 3D Scenes

For all scenes of dataset 3D, we created a color saliency map Scolor and a depth
saliency map Sdepth , both normalized to the same dynamic range. Then, a
comparison of these two models with the whole set of human fixation patterns
was performed in order to obtain the respective scores. The score s was computed
as in previous experiments.

Figure 5 shows the scores for the 12 individual images. The main observation
here is that the resulting scores are widely spread in their value [5 .. 76]. The
effect is the same as in previous experiments and above comments keep their full
validity here. It shows again that the model performance depends in a strong
way on the kind of scene.

Referring to the model performance, table 2 presents the average scores s over
the whole dataset, for both the color and the depth models. The standard error
was computed as above. The main observation is that the depth model fares
better than the color one. More specifically, the depth model yields an average
score s that is 11.8% better than the color model. This general result underlines

Fig. 5. Individual scores for images of dataset 3D, both for the color and depth models

Table 2. Scores of the color and depth models

score s

color model Scolor 36.2 ± 2.1

depth model Sdepth 40.5 ± 2.1
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the usefulness of the depth channel in the model and goes toward assessing that
depth contributes to the visual attention process.

5 Conclusion

The research described in this paper aims at assessing the performance of the
saliency model of visual attention in the case of natural scenes. The evaluation is
based on the comparison of computer saliency maps with human visual attention
derived from fixation patterns while subjects are looking at the scenes of interest.

A new aspect of this research is the application to 3D color scenes. In this re-
spect, this study provides for the first time quantitative performance comparisons
of different models of visual attention, giving new insights to the contribution of
some of its components, namely color and depth.

The experiments involved test persons watching at 3D scenes generated by
stereo-vision. An autostereoscopic display was used so that stereo image pairs
could be shown to the subjects while recording their eye movements. A first
series of experiments refers to the performance in presence of color images. It
involves 40 images of different kinds and nature. A second series refers to the
performance in presence of color 3D scenes. It involves 12 scenes of different
kinds and nature. The number of test persons is 20 in each case.

The eye saccade patterns were then compared to the saliency map generated
by the computer. The comparison provides a score (s), i.e. a scalar that measures
the similarity of the responses. The higher the score, the better the similarity and
the better the performance of the attention model for predicting human attention.

The experiments provide scores covering a wide range of values, i.e. the range
is [-5 .. 120] for the images and [5...75] for the 3D scenes. These large score
variations illustrate the strong dependence on the kind of scenes: Visual attention
of some scenes is very well predicted by the model, while the prediction is quite
poor in some cases. These results confirm previous understanding of the model
capability and earlier measurements on smaller datasets.

Beyond these large variations, the study shows significant performance differ-
ences between the three investigated models. The model performance increases
with the model complexity. The performance is first increased when passing from
the basic greyscale model to the color model. This is quantitatively assessed by
a score increase of 25%. A further performance increase, assessed by a score
increase of 11%, characterizes the model extension to depth.

The study therefore confirms the feasibility of a quantitative approach to
performance evaluation and provides a first quantitative evaluation of specific
models differing by their capacity to deal with color and depth.
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