
Embedded 3D vision system for automated micro-assemblyJames Mure-Dubois and Heinz HügliUniversity of Neuhâtel - Institute of Mirotehnology, 2000 Neuhâtel, SwitzerlandABSTRACTMahine vision plays an important role in automated assembly. However, present vision systems are not adequatefor robot ontrol in an assembly environment where individual omponents have sizes in the range of 1 to 100mirometers, sine urrent systems do not provide su�ient resolution in the whole workspae when they are�xed, and they are too bulky to be brought lose enough to the omponents. A small-size 3D vision system isexpeted to provide two deisive advantages: high auray and high �exibility. The presented work aims todevelop a 3D vision sensor easily embedded in a miro-assembly robot. The paper starts by a sreening of 3Dsensing methods, performed in order to identify the best andidates for miniaturization, and that results in theseletion of the multifous priniple (whih elegantly avoids the depth of �eld problem enountered for examplein stereo vision). Here, depth is measured by determination of sharpness maxima in a stak of images aquiredat di�erent elevations. Then, it presents a preliminary system on�guration, that delivers images of a 1300x1000mirometers �eld of view with lateral resolution better than 5 mirometers and vertial resolution better than20 mirometers. Finally, future steps in development of a real-time embedded multifous sensor are presented,with a disussion of the most ritial tradeo�s.Keywords: 3D vision, miro-assembly, range imaging, automated assembly, depth from fous , miro vision,embedded vision, 3D sensing 1. INTRODUCTIONIn automated miro-assembly, a robot is used to manipulate miro-sized parts. Auray requirements are suhthat assembly an not be realized through open-loop robot ommand. In order to lose the loop, either forteleoperation1,2 or autonomous3,4 robot operation, vision sensors are used to provide feedbak on the relativepositions of the e�etor and parts to assemble. Most vision systems employed in automated miro-assemblyare based on bulky mirosopes1,2,4,5,6 with a �xed �eld of view. Typially, suh systems feature �xed robote�etors, entered within the mirosope �eld of view. Parts are brought for assembly by a motorized stagemoving under the mirosope. This mode of operation is slow sine a large mass must be set in motion for eahnew part introdued. In ontrast with this approah, parallel robot systems (see �gure 1) use low-mass e�etorsapable of being moved quikly over a large assembly workspae, allowing for muh faster assembly. However, inthis situation, a vision system overing all possible positions of the e�etors (i.e. the whole assembly workspae)is not aurate enough. Therefore, for losed-loop operation, a high-resolution, embedded vision system must beonsidered. This approah has been used for example in planar assembly tasks7, where a small amera providedvision feedbak. For solving more general assembly tasks that require 3D vision, a universal 3D sensor is stillmissing. The presented work aims to develop a 3D vision sensor easily embedded in a miro-assembly robot.It is expeted that 3D sensing will bring signi�ant improvements for handling omplex objets (free-form 3Dobjets with aspet ratio lose to 1).Setion 2 introdues the main harateristis to onsider in the design of an embedded, 3D vision sensor. Thoseharateristis are then used as guidelines in a sreening of 3D measurement methods that ould be deployed ina miniature sensor. Setion 3 desribes the 3D measurement priniple we seleted, while subsetion 3.4 inludesa disussion of some of its limitations with respet to miniaturization. In setion 4, we present 3D measurementsobtained with an experimental miniature imaging system, and ompare the performane to a referene, high-resolution imaging system. Finally, setion 5 provides a summary of the performane attained with a miniaturemultifous system, together with a list of future developments required to realize a high performane 3D loalvision sensor.
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(a) (b)Figure 1. Miro-assembly robot with global (a) or embedded (b) vision systems.2. EMBEDDED VISION SYSTEM REQUIREMENTSIn this setion, we present a list of the desired properties for an embedded 3D vision sensor. The tradeo�sassoiated with eah of these properties are also brie�y disussed.2.1. MassWhile sensor mass is generally not onsidered important in omputer vision appliations, it is, however, of keyrelevane for embedded system design. As a priniple for a loal sensor, the volume imaged is only a smallfration of the assembly workspae. This implies that the embedded sensor will be moved with the robot ativesystems (grippers, atuators) during assembly operations. Fast motion is possible only if sensor mass is low. Asa guideline for a pratial appliation, we set the onstraint : m ≤ 100 g. We will see that this onstraint is ofritial importane, sine it prohibits the use of high performane optis, suh as bulky mirosope objetives.This in turn limits the lateral and vertial resolution that an be attained. It also onstrains the hoie of theimager devie (the pixel size must be small, in order to provide high resolution images with a small optialmagni�ation).2.2. Resolution - Field of viewIn order to reah assembly toleranes, the spatial resolution (rx, ry , rz) must be as high as possible. Furthermore,it is desirable to have a volume of view (Lx, Ly, Lz) as large as possible, in order to inlude all the relevantparts present in the workspae into the loal 3D image. As a target for system design, we speify a rangefor the volume of view varying between 1 mm3 and 1 cm3. Sine the number of pixels in a standard amerararely exeeds 1000 × 1000, planar resolution will be, at best, limited to one thousandth of the volume of view
(0.1 µm−1, 0.1 µm−1) ≤ (rx, ry) ≤ (1 µm−1, 1 µm−1) . A ompromise must be found between resolution andvolume of view, depending on the target assembly appliation.2.3. Frame rateWhen used in a prodution environment, the 3D sensor must provide data in real-time. As a target value for apratial appliation, we speify that the data should be produed at R = 10 fps (allows real-time teleoperation,and more e�ient autonomous operations). Depending on the �nal appliation, a lower frame-rate ould beaepted, espeially in appliations where high-preision is more ritial than high-speed operation.



2.4. SummaryThe requirements exposed above are very di�erent in their nature. It may show di�ult to reah all target valuessimultaneously. Therefore, we need to set priority rules between the di�erent requirements. Table 1 summarizesthe expetations for a loal 3D sensor, and exposes the main penalty if the expeted values annot be reahed.When aiming for an embedded appliation, the highest priority shall be set to the ompliane with the massrequirement. Next in order of priority omes the spatial resolution. Volume imaged and frame rate share thethird level of priority. Table 1. Expetations for loal 3D vision sensorProperty Ideal ase Minimal expetation PenaltyMass As low as possible m ≤ 100 g Embedment in robot impossibleSpatial resolution As high as possible rx, ry, rz ≥ 0.1 µm−1 Assembly impossible (not aurateenough)Volume imaged As high as possible Lx, Ly, Lz ≥ 1 mm Not enough information (loal sanrequired)Frame rate As high as possible R ≥ 10 fps Low assembly speed2.5. Sreening of depth measurement methodsThe above riteria an be used as guidelines to selet the most appropriate depth measurement priniple for thedesign of an embedded 3D sensor. We will list here four approahes to 3D vision, and present the main elementsto onsider when aiming to develop a high resolution 3D imaging system. The goal here is not to disuss indepth all of these approahes, but to explain the seletion of the multifous method, whih will be disussed inthe next setion. The approahes to 3D vision we onsidered are:
• Multifous vision,
• White light interferometry,
• Depth from strutured light,
• Depth from stereo.In the multifous approah8,9, the objet is imaged by a amera with a short depth of �eld. The amera is movedwith respet to the objet in order to perform a depth san. Depth is determined by sharpness maximizationalgorithms applied to a stak of sanned images.White light interferometry10involves two oherent light beams. The referene beam is re�eted on a san mirror,while the probe beam is projeted on the objet. Interferene between the two re�eted beams allow to measurethe depth di�erene between objet and referene mirror. Displaement of the san mirror allows to obtain therange map for the entire objet.In depth from strutured light11,12, a high resolution light pattern is projeted on the objet, while the imagingdevie reords the resulting image, whih is harateristi of objet topology. Software algorithms are used todetermine the depth index enoded in the intensity struture reorded for eah point. Depth is then obtainedthrough triangulation.Finally, in depth from stereo13, the objet is imaged by two ameras at di�erent positions. By �nding orrespon-denes between the two images, depth an be omputed through triangulation.Of the four methods mentioned above, two require a mehanial depth san (multifous, white light inter-ferometry), two require ative illumination (white light interferometry, strutured light), and one requires aorrespondene mathing algorithm (stereo vision). Some of the key harateristis of those methods are pre-sented in table 2.For an embedded implementation, depth from strutured light and white light interferometry are ruled out bythe mass requirements (mass of the ative illumination setup). Stereo vision is limited by the resolution/depth



Table 2. 3D vision methods key harateristisMethod Advantages Penalties Miniaturization issuesMultifous + Passive system+ Easy parametrization ofz-resolution - mehanial depth sanrequired- performane is sampledependent - inreased depth of �eld forminiature system- amera motion requiredWhite light in-terferometry + high auray+ low omputational ostwhen using smart pixelsensors 14 - mehanial san required- limited depth range - omplex optis- ative illumination requiredDepth fromstrutured light + low omplexity proess-ing+ simple imaging hard-ware - ative illumination re-quired- indexing problem - light soure miniaturization- indexing problem (olu-sions)Depth fromstereo + passive system+ no moving parts - orrespondene problem- small depth of view - small depth of viewof �eld tradeo� : the high optial magni�ation required for high resolution imaging redues the depth of �eldwhih, for stereo, limits the depth where orrespondenes an be found between image pairs. Contrasting withstereo, multifous makes use of the limited depth of �eld when working at high magni�ation. This passivetehnique is therefore most appropriate when trying to produe high resolution 3D images. A more detaileddesription of this approah is given in the following setion.3. MULTIFOCUS 3D MICROSCOPYIn this setion, we reall the basi priniple of multifous 3D measurements, present a simple model used forestimating its performane and �nally, we give a brief theoretial overview of the limitations assoiated withminiaturization.3.1. Depth measurement prinipleThe priniple of multifous 3D measurement is desribed in [15, 9]. A mirosope with a short depth of �eld,is used to aquire a series of images Ii(x, y) at di�erent elevations zi relative to the objet (�gure 2). Aftertransformation of the images into assoiated sharpness images Si(x, y), the objet depth for any pixel in theimage is the depth assoiated to the image of maximum sharpness among the stak.
Z(x, y) = zî(x,y) where î(x, y) = argmax(Si(x, y)) (1)The extent of the depth of �eld puts a higher limit to the ahievable depth resolution.3.2. Multifous system key omponentsBased on the multifous depth measurement priniple presented above, we an distinguish 4 main omponentsin a multifous 3D imaging system:

• Optial omponent : image formation system.
• Eletroni omponent : image sensor.
• Mehanial omponent : vertial translation mehanism (z-motor).
• Software omponent : ontrol of amera displaement, sharpness maximization and depth determinationalgorithms.



Figure 2. Multifous 3D mirosopy: measurement prinipleThe present work aims to analyze the e�et of embedment onstraints (prinipally mass) on the optial andeletroni omponent, sine those hardware omponents are the most ritial with respet to 3D imaging perfor-mane. The topi of extending embedment ompliane to the z-motor is left for a future work. Finally, we willlist some perspetives for adaptation of software omponent to real-time onstraints.3.3. Multifous software proessingThe key element in multifous software proessing is sharpness analysis. The sharpness analysis is performedby applying an operator sensitive to high frequenies on the aquired intensity images. Among the varioushigh-frequeny sensitive operators, we used loal variane15 and Laplaian �lters. For eah image Ii(x, y) in thestak, a sharpness map Si(x, y) is omputed
Si(x, y) = |I ∗ K| where K is for example a 5x5 Laplaian kernel K5 =
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(2)A limitation of high frequeny energy measurements suh as desribed in equation 2 is sensitivity to noise.Therefore the dimension of sharpness operator kernels must be adapted to the sene measured (in order to probespatial frequenies that are strongly represented in the sene). Even when the appropriate sharpness operator isused, presene of false depth readings aused by noise an not be avoided.3.4. Multifous with miniature imagerWe have seen (setion 2) that the mass requirement is the most ritial in the development of an embedded 3Dvision system. While a CCD sensor has very small mass, optis needed to form an image on the sensor are ratherbulky; their weight an be minimized if :
• the lateral extent of the image is small
• the magni�ation is smallTherefore, an embedded vision system must use a small sensor, with minimal pixel pith. The prie to pay is ahigher noise sensitivity for the sensor.



3.5. Theoretial expetationsThe auray in depth determination will be at best of the same order of magnitude as depth of �eld. Depth of�eld is de�ned as the maximum displaement in depth for an objet while its image blur stays on�ned withinone pixel of the sensor. Using a simple, single lens model, depth of �eld DoF an be expressed8 as :
DoF =
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(3)where:
• f is the foal length of the optial system,
• D is the optial system entrane pupil diameter,
• ǫ is the imaging sensor pixel pith,
• Ns is the lateral extension of the sensor (in pixels),
• X is the lateral extension of the image �eld.Note that the term Ns·ǫ

X
is simply the optial magni�ation M .Equation 3 learly shows that a short depth of �eld is obtained with short foal length, high magni�ation, andlarge entrane pupil diameter. For multifous depth measurement, we are interested in having the shortest depthof �eld. But the entrane pupil diameter is limited by weight onsiderations in a loal sensor. Similarly, reduingthe foal length will redue working distane for the sensor. The urve in �gure 3 shows predited depth of �elda miniature imaging system when Ns, ǫ, D and f are �xed, and the optial magni�ation M = Ns·ǫ

X
is variedto aomodate for di�erent objet size into the �eld of view X . In this example, we hose Ns = 752, ǫ = 3 µm,

D = 7 mm, f = 15 mm (the values orrespond to the experimental system of setion 4), while the range for�eld dimension orresponds to the requirements in setion 2. Three magni�ation values (M = 0.3, 1.0, 3.0) arereported on the urve.

Figure 3. (Plain urve) Depth of �eld expetation for miniature imaging system - (Asterisks) Measured depth auray(see setion 4.3)



Figure 4. Miniature imager with 15mm objetive3.5.1. Limitations of miniature multifous systemFigure 3 indiates that the depth resolution for a multifous system using a miniature imager is low when the�eld imaged is wide and it is high when the target �eld is narrow. For a 1 × 1mm �eld, the depth of �eld islose to the minimal expetation for vertial auray de�ned in table 1 (10 µm). Note that the depth of �eld isomparatively larger for miniature imagers, where the optial aperture is limited, when opposed to mirosopesystems.Also, multifous 3D is a passive method, whih implies no illumination, and objet dependent ontrast. Thislimits the sope of appliations to objets with su�ient ontrast features. High auray is expeted with someontrast rih metalli surfaes while uniform plasti surfaes provide muh less auray.4. EXPERIMENTAL RESULTS4.1. Miniature system implementationThe implemented miniature imager uses a Kappa CH-166 miro-amera, that ontains an 1/6� CCD sensor withPAL resolution (752 × 582). The pixel pith is ǫx, ǫy = 3.0 µm × 3.0 µm. Depending on the �eld to over,di�erent optial magni�ations M must be employed. The amera objetive has foal length f = 15 mm, andspaer elements between objetive and sensor allow to span magni�ations ranging from M = 0.25 to M ≈ 2.0.The miro-amera is shown on �gure 4. The mass of the imager devie (inluding objetive) does not exeed
20 g. When ompared to the expetations in table 1, this indiates that a mass budget of 80 g an be spent onthe z-motor in the development of the embedded system. Note that urrently, our experimental setup uses muhbulkier motors (mass > 2 kg), sine our purpose is to evaluate the miniature imager only.The software omponent is realized as a C++ appliation on PC. This appliation ontrols amera displaement,image aquisition, sharpness maximization, noise �ltering and display of range maps. Image aquisition is per-formed through a Matrox Meteor II frame-grabber. The sharpness evaluation algorithms are implemented eitherwith MIL16 or OpenCV17, and sharpness maximization is performed in parallel with image stak aquisition.Nevertheless, sharpness determination remains a time onsuming operation, espeially when a large kernel isused (a typial proessing time for an image (752 × 582) is 50 ms).4.2. Sample imagesWe present depth maps aquired with the miniature imager system, whih illustrate the adequay of this om-ponent to the task proposed in setion 1. The �rst sample is a detail of a srew viewed from top (�gure 5), thatwas aquired at high magni�ation (M = 1.85). The dimensions of the sene Lx × Ly × Lz are approximately
1300 × 1000 × 2500µm3. This example shows the potential of the miniature system to provide aurate depthdata at high resolution, for high aspet ratio senes. The 3D rendering allows to see that the system is ableto measure the slope in the srew spirals. The seond sample (�gure 6) was aquired with low magni�ation(M = 0.28). The image shows a random arrangement of nails, whih serves as an example of bulk part feeding



situation3. With range information, it is easy to distinguish the top nails from the bottom ones, so that anassembly robot an be programmed to automatially pik one of these parts for assembly.
(a) Mid-stak image (b)Range image (c) 3D renderingFigure 5. Sample image for miniature system : srew tip
(a) Mid-stak image (b)Range image (c) 3D renderingFigure 6. Sample image for miniature system : nails4.3. Depth aurayAuray evaluation is di�ult for passive 3D measurement systems, sine range image quality depends onthe image ontents. To estimate depth auray, simple senes (desribed by a simple geometri model) aremeasured. The sene used in our experiments, shown on �gure 7 (a), features two idential disks, with diameter

19 mm. The height di�erene between the parts is 1.5 ± 0.1 mm. This sene was imaged with di�erent optialon�gurations (labels 1 to 4 in image 7 and table 3), resulting in di�erent �elds of view (see �gure 7 (a)). Foreah test sene, the number of images in the stak was 128, the sanned depth range was ∆Z ≈ 2 mm. Thegeometri model for eah disk is a perfetly �at and horizontal surfae. In eah range map, two regions of interest(overing approximately one quarter of the image �eld) are seleted: Rb (on the bottom disk) and Rt (on the topdisk) . The auray is estimated as the range standard deviation σ, averaged for those two regions of interest :
σ =

σl + σh

2
(4)Measurement results are summarized in table 3, whih also realls auray values obtained with high-performanemultifous mirosope systems [8], as referene values. Auray results for senes 1 to 4 were also reported onTable 3. Measurements with miniature imager (1 to 4), ompared to auray obtained with mirosope setups8 (5, 6)Sene 1 2 3 4Imager Miniature Miniature Miniature MiniatureField of view [mm] 6.7 × 5.1 3.4 × 2.6 2.2 × 1.7 1.3 × 1.0Magni�ation 0.36 0.72 1.10 1.85

σ[µm] 160 78 28 20
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(a) (b)Figure 7. Auray measurement (Staked metal disks) - (a) top view of the sene - (b) 3D rendering of measured rangedata for di�erent �elds of view (see table 3)�gure 3, where they an be ompared to the depth of �eld values. As expeted, the highest depth auray isobtained for narrowest �eld of view. The best auray obtained with our miniature imager is 20µm. This resultdoes not omply with the expetations of table 1 (a fator of 2 is missing). Figure 8 shows a omparison of testsenes aquired with miniature imager or mirosope. A bulky mirosope is 10 times more aurate (DMLA8).However, suh a mirosope is typially heavier than 3 kg. The observed 10-fold redution in auray follows a
150-fold redution in mass. Suh a tradeo� is neessary if an embedded system is to be developped.

Figure 8. Range image aquired with miniature system (left) - Range image aquired with mirosope system (right)5. PERSPECTIVESAs mentioned above, the design of an embedded 3D vision sensor is far from omplete. Many hallenges remain ifall expetations de�ned in table 1 are to be met. Table 4 summarizes the performane of the developped systemand lists some perspetives for improvement in eah area.



Table 4. Present performane of mutlifous system, with perspetives for improvement.Property Expetation Current implemen-tation Improvement byMass m ≤ 100 g m > 2000 g (imager :
20 g , motor : 2000 g

Low-mass z-motorSpatial resolution rx, ry , rz ≥ 0.1 µm−1 rx, ry, rz = 0.6 × 0.6 ×
0.05 µm−3

(Higher optial aperture)Volume imaged Lx, Ly, Lz ≥ 1 mm Lx, Ly, Lz = 1.3×1.0×
3.0 mm3Frame rate R ≥ 10 fps R < 0.25 fps Fast z-motor, fast amera, ROI pro-essing, on-hip ontrast proessing5.1. Low-mass multifous motorWe have seen that multifous with a miniature imager an reah auray spei�ations in the order of 20 µm,with a mass budget of 20 g for the imager. The following step in development of an embedded multifous sensoris the seletion of an appropriate z-motor, apable of moving this 20 g imager mass over a stroke of 5 mm ormore, while the motor mass stays under 80 g. This step is required for the ompletion of a �rst embedded 3Dsensor prototype. Apart from mass, riteria to onsider for motor seletion are : linear auray, length of stroke,and speed of operation. For a �rst embedded prototype, mass and linear auray are onsidered ritial, whilelength of stroke and speed of operation are seondary.5.2. High-frame rate imagingIn order to meet the frame rate spei�ation of table 1, additional steps are required. First, the z-motor must movethe imager pakage with 10Hz period. Seond, the image sensor must aquire images at a rate of 200fps (underthe assumption that one range image requires a stak of 20 2D images). Finally, the software omponent mustompute sharpness images at the same rate, i.e. in less than 5 ms. To reah this goal, sharpness determinationould be performed on a small region of the image only (using a 200 × 200 region of interest allows to reduethe omputation time by a fator higher than 10). Alternatively, smart imagers with on-hip proessing ouldbe used to speed up the omputation of sharpness values.6. CONCLUSIONThis paper is a ontribution to the development of a 3D vision system suited for a miro-assembly robot. Thepresented analysis of typial requirements shows that mass limitations are most ritial. Mass onsiderationsmotivated the seletion of the multifous approah for depth determination. During the �rst step of developmentpresented in this paper, a multifous system using miniature image sensor and optial imaging system, but bulkyz-motor, was realized, in order evaluate the performane of a miniature imager.Experiment results showed that the depth auray for the system with miniature imager (mass < 20 g) is loseto 20 µm, whih represents degradation in performane by a fator of about 10 when ompared with a lassialsystem based on a bulky mirosope. The next step identi�ed in the design of an embedded 3D sensor based onthe multifous approah is the integration of a low-mass z-motor. Finally, a fully funtional embedded 3D sensorsupposes real-time proessing. Two possibilities are onsidered for this step: limitation of the �eld of view to a

200 × 200 region of interest, or on-hip proessing for sharpness alulation by a dediated imager.ACKNOWLEDGMENTSThis work was realized in ollaboration with Centre Suisse d'Eletronique et de Mirotehnique SA, Switzerland.
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