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hâtel - Institute of Mi
rote
hnology, 2000 Neu
hâtel, SwitzerlandABSTRACTMa
hine vision plays an important role in automated assembly. However, present vision systems are not adequatefor robot 
ontrol in an assembly environment where individual 
omponents have sizes in the range of 1 to 100mi
rometers, sin
e 
urrent systems do not provide su�
ient resolution in the whole workspa
e when they are�xed, and they are too bulky to be brought 
lose enough to the 
omponents. A small-size 3D vision system isexpe
ted to provide two de
isive advantages: high a

ura
y and high �exibility. The presented work aims todevelop a 3D vision sensor easily embedded in a mi
ro-assembly robot. The paper starts by a s
reening of 3Dsensing methods, performed in order to identify the best 
andidates for miniaturization, and that results in thesele
tion of the multifo
us prin
iple (whi
h elegantly avoids the depth of �eld problem en
ountered for examplein stereo vision). Here, depth is measured by determination of sharpness maxima in a sta
k of images a
quiredat di�erent elevations. Then, it presents a preliminary system 
on�guration, that delivers images of a 1300x1000mi
rometers �eld of view with lateral resolution better than 5 mi
rometers and verti
al resolution better than20 mi
rometers. Finally, future steps in development of a real-time embedded multifo
us sensor are presented,with a dis
ussion of the most 
riti
al tradeo�s.Keywords: 3D vision, mi
ro-assembly, range imaging, automated assembly, depth from fo
us , mi
ro vision,embedded vision, 3D sensing 1. INTRODUCTIONIn automated mi
ro-assembly, a robot is used to manipulate mi
ro-sized parts. A

ura
y requirements are su
hthat assembly 
an not be realized through open-loop robot 
ommand. In order to 
lose the loop, either forteleoperation1,2 or autonomous3,4 robot operation, vision sensors are used to provide feedba
k on the relativepositions of the e�e
tor and parts to assemble. Most vision systems employed in automated mi
ro-assemblyare based on bulky mi
ros
opes1,2,4,5,6 with a �xed �eld of view. Typi
ally, su
h systems feature �xed robote�e
tors, 
entered within the mi
ros
ope �eld of view. Parts are brought for assembly by a motorized stagemoving under the mi
ros
ope. This mode of operation is slow sin
e a large mass must be set in motion for ea
hnew part introdu
ed. In 
ontrast with this approa
h, parallel robot systems (see �gure 1) use low-mass e�e
tors
apable of being moved qui
kly over a large assembly workspa
e, allowing for mu
h faster assembly. However, inthis situation, a vision system 
overing all possible positions of the e�e
tors (i.e. the whole assembly workspa
e)is not a

urate enough. Therefore, for 
losed-loop operation, a high-resolution, embedded vision system must be
onsidered. This approa
h has been used for example in planar assembly tasks7, where a small 
amera providedvision feedba
k. For solving more general assembly tasks that require 3D vision, a universal 3D sensor is stillmissing. The presented work aims to develop a 3D vision sensor easily embedded in a mi
ro-assembly robot.It is expe
ted that 3D sensing will bring signi�
ant improvements for handling 
omplex obje
ts (free-form 3Dobje
ts with aspe
t ratio 
lose to 1).Se
tion 2 introdu
es the main 
hara
teristi
s to 
onsider in the design of an embedded, 3D vision sensor. Those
hara
teristi
s are then used as guidelines in a s
reening of 3D measurement methods that 
ould be deployed ina miniature sensor. Se
tion 3 des
ribes the 3D measurement prin
iple we sele
ted, while subse
tion 3.4 in
ludesa dis
ussion of some of its limitations with respe
t to miniaturization. In se
tion 4, we present 3D measurementsobtained with an experimental miniature imaging system, and 
ompare the performan
e to a referen
e, high-resolution imaging system. Finally, se
tion 5 provides a summary of the performan
e attained with a miniaturemultifo
us system, together with a list of future developments required to realize a high performan
e 3D lo
alvision sensor.
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(a) (b)Figure 1. Mi
ro-assembly robot with global (a) or embedded (b) vision systems.2. EMBEDDED VISION SYSTEM REQUIREMENTSIn this se
tion, we present a list of the desired properties for an embedded 3D vision sensor. The tradeo�sasso
iated with ea
h of these properties are also brie�y dis
ussed.2.1. MassWhile sensor mass is generally not 
onsidered important in 
omputer vision appli
ations, it is, however, of keyrelevan
e for embedded system design. As a prin
iple for a lo
al sensor, the volume imaged is only a smallfra
tion of the assembly workspa
e. This implies that the embedded sensor will be moved with the robot a
tivesystems (grippers, a
tuators) during assembly operations. Fast motion is possible only if sensor mass is low. Asa guideline for a pra
ti
al appli
ation, we set the 
onstraint : m ≤ 100 g. We will see that this 
onstraint is of
riti
al importan
e, sin
e it prohibits the use of high performan
e opti
s, su
h as bulky mi
ros
ope obje
tives.This in turn limits the lateral and verti
al resolution that 
an be attained. It also 
onstrains the 
hoi
e of theimager devi
e (the pixel size must be small, in order to provide high resolution images with a small opti
almagni�
ation).2.2. Resolution - Field of viewIn order to rea
h assembly toleran
es, the spatial resolution (rx, ry , rz) must be as high as possible. Furthermore,it is desirable to have a volume of view (Lx, Ly, Lz) as large as possible, in order to in
lude all the relevantparts present in the workspa
e into the lo
al 3D image. As a target for system design, we spe
ify a rangefor the volume of view varying between 1 mm3 and 1 cm3. Sin
e the number of pixels in a standard 
amerararely ex
eeds 1000 × 1000, planar resolution will be, at best, limited to one thousandth of the volume of view
(0.1 µm−1, 0.1 µm−1) ≤ (rx, ry) ≤ (1 µm−1, 1 µm−1) . A 
ompromise must be found between resolution andvolume of view, depending on the target assembly appli
ation.2.3. Frame rateWhen used in a produ
tion environment, the 3D sensor must provide data in real-time. As a target value for apra
ti
al appli
ation, we spe
ify that the data should be produ
ed at R = 10 fps (allows real-time teleoperation,and more e�
ient autonomous operations). Depending on the �nal appli
ation, a lower frame-rate 
ould bea

epted, espe
ially in appli
ations where high-pre
ision is more 
riti
al than high-speed operation.



2.4. SummaryThe requirements exposed above are very di�erent in their nature. It may show di�
ult to rea
h all target valuessimultaneously. Therefore, we need to set priority rules between the di�erent requirements. Table 1 summarizesthe expe
tations for a lo
al 3D sensor, and exposes the main penalty if the expe
ted values 
annot be rea
hed.When aiming for an embedded appli
ation, the highest priority shall be set to the 
omplian
e with the massrequirement. Next in order of priority 
omes the spatial resolution. Volume imaged and frame rate share thethird level of priority. Table 1. Expe
tations for lo
al 3D vision sensorProperty Ideal 
ase Minimal expe
tation PenaltyMass As low as possible m ≤ 100 g Embedment in robot impossibleSpatial resolution As high as possible rx, ry, rz ≥ 0.1 µm−1 Assembly impossible (not a

urateenough)Volume imaged As high as possible Lx, Ly, Lz ≥ 1 mm Not enough information (lo
al s
anrequired)Frame rate As high as possible R ≥ 10 fps Low assembly speed2.5. S
reening of depth measurement methodsThe above 
riteria 
an be used as guidelines to sele
t the most appropriate depth measurement prin
iple for thedesign of an embedded 3D sensor. We will list here four approa
hes to 3D vision, and present the main elementsto 
onsider when aiming to develop a high resolution 3D imaging system. The goal here is not to dis
uss indepth all of these approa
hes, but to explain the sele
tion of the multifo
us method, whi
h will be dis
ussed inthe next se
tion. The approa
hes to 3D vision we 
onsidered are:
• Multifo
us vision,
• White light interferometry,
• Depth from stru
tured light,
• Depth from stereo.In the multifo
us approa
h8,9, the obje
t is imaged by a 
amera with a short depth of �eld. The 
amera is movedwith respe
t to the obje
t in order to perform a depth s
an. Depth is determined by sharpness maximizationalgorithms applied to a sta
k of s
anned images.White light interferometry10involves two 
oherent light beams. The referen
e beam is re�e
ted on a s
an mirror,while the probe beam is proje
ted on the obje
t. Interferen
e between the two re�e
ted beams allow to measurethe depth di�eren
e between obje
t and referen
e mirror. Displa
ement of the s
an mirror allows to obtain therange map for the entire obje
t.In depth from stru
tured light11,12, a high resolution light pattern is proje
ted on the obje
t, while the imagingdevi
e re
ords the resulting image, whi
h is 
hara
teristi
 of obje
t topology. Software algorithms are used todetermine the depth index en
oded in the intensity stru
ture re
orded for ea
h point. Depth is then obtainedthrough triangulation.Finally, in depth from stereo13, the obje
t is imaged by two 
ameras at di�erent positions. By �nding 
orrespon-den
es between the two images, depth 
an be 
omputed through triangulation.Of the four methods mentioned above, two require a me
hani
al depth s
an (multifo
us, white light inter-ferometry), two require a
tive illumination (white light interferometry, stru
tured light), and one requires a
orresponden
e mat
hing algorithm (stereo vision). Some of the key 
hara
teristi
s of those methods are pre-sented in table 2.For an embedded implementation, depth from stru
tured light and white light interferometry are ruled out bythe mass requirements (mass of the a
tive illumination setup). Stereo vision is limited by the resolution/depth



Table 2. 3D vision methods key 
hara
teristi
sMethod Advantages Penalties Miniaturization issuesMultifo
us + Passive system+ Easy parametrization ofz-resolution - me
hani
al depth s
anrequired- performan
e is sampledependent - in
reased depth of �eld forminiature system- 
amera motion requiredWhite light in-terferometry + high a

ura
y+ low 
omputational 
ostwhen using smart pixelsensors 14 - me
hani
al s
an required- limited depth range - 
omplex opti
s- a
tive illumination requiredDepth fromstru
tured light + low 
omplexity pro
ess-ing+ simple imaging hard-ware - a
tive illumination re-quired- indexing problem - light sour
e miniaturization- indexing problem (o

lu-sions)Depth fromstereo + passive system+ no moving parts - 
orresponden
e problem- small depth of view - small depth of viewof �eld tradeo� : the high opti
al magni�
ation required for high resolution imaging redu
es the depth of �eldwhi
h, for stereo, limits the depth where 
orresponden
es 
an be found between image pairs. Contrasting withstereo, multifo
us makes use of the limited depth of �eld when working at high magni�
ation. This passivete
hnique is therefore most appropriate when trying to produ
e high resolution 3D images. A more detaileddes
ription of this approa
h is given in the following se
tion.3. MULTIFOCUS 3D MICROSCOPYIn this se
tion, we re
all the basi
 prin
iple of multifo
us 3D measurements, present a simple model used forestimating its performan
e and �nally, we give a brief theoreti
al overview of the limitations asso
iated withminiaturization.3.1. Depth measurement prin
ipleThe prin
iple of multifo
us 3D measurement is des
ribed in [15, 9]. A mi
ros
ope with a short depth of �eld,is used to a
quire a series of images Ii(x, y) at di�erent elevations zi relative to the obje
t (�gure 2). Aftertransformation of the images into asso
iated sharpness images Si(x, y), the obje
t depth for any pixel in theimage is the depth asso
iated to the image of maximum sharpness among the sta
k.
Z(x, y) = zî(x,y) where î(x, y) = argmax(Si(x, y)) (1)The extent of the depth of �eld puts a higher limit to the a
hievable depth resolution.3.2. Multifo
us system key 
omponentsBased on the multifo
us depth measurement prin
iple presented above, we 
an distinguish 4 main 
omponentsin a multifo
us 3D imaging system:

• Opti
al 
omponent : image formation system.
• Ele
troni
 
omponent : image sensor.
• Me
hani
al 
omponent : verti
al translation me
hanism (z-motor).
• Software 
omponent : 
ontrol of 
amera displa
ement, sharpness maximization and depth determinationalgorithms.



Figure 2. Multifo
us 3D mi
ros
opy: measurement prin
ipleThe present work aims to analyze the e�e
t of embedment 
onstraints (prin
ipally mass) on the opti
al andele
troni
 
omponent, sin
e those hardware 
omponents are the most 
riti
al with respe
t to 3D imaging perfor-man
e. The topi
 of extending embedment 
omplian
e to the z-motor is left for a future work. Finally, we willlist some perspe
tives for adaptation of software 
omponent to real-time 
onstraints.3.3. Multifo
us software pro
essingThe key element in multifo
us software pro
essing is sharpness analysis. The sharpness analysis is performedby applying an operator sensitive to high frequen
ies on the a
quired intensity images. Among the varioushigh-frequen
y sensitive operators, we used lo
al varian
e15 and Lapla
ian �lters. For ea
h image Ii(x, y) in thesta
k, a sharpness map Si(x, y) is 
omputed
Si(x, y) = |I ∗ K| where K is for example a 5x5 Lapla
ian kernel K5 =













1 2 3 2 1
2 4 8 4 2
3 8 −84 8 3
2 4 8 4 2
1 2 3 2 1













(2)A limitation of high frequen
y energy measurements su
h as des
ribed in equation 2 is sensitivity to noise.Therefore the dimension of sharpness operator kernels must be adapted to the s
ene measured (in order to probespatial frequen
ies that are strongly represented in the s
ene). Even when the appropriate sharpness operator isused, presen
e of false depth readings 
aused by noise 
an not be avoided.3.4. Multifo
us with miniature imagerWe have seen (se
tion 2) that the mass requirement is the most 
riti
al in the development of an embedded 3Dvision system. While a CCD sensor has very small mass, opti
s needed to form an image on the sensor are ratherbulky; their weight 
an be minimized if :
• the lateral extent of the image is small
• the magni�
ation is smallTherefore, an embedded vision system must use a small sensor, with minimal pixel pit
h. The pri
e to pay is ahigher noise sensitivity for the sensor.



3.5. Theoreti
al expe
tationsThe a

ura
y in depth determination will be at best of the same order of magnitude as depth of �eld. Depth of�eld is de�ned as the maximum displa
ement in depth for an obje
t while its image blur stays 
on�ned withinone pixel of the sensor. Using a simple, single lens model, depth of �eld DoF 
an be expressed8 as :
DoF =

2 ·
(

Ns·ǫ
X

+ 1
)

· ǫ · f · D

D2 ·
(

Ns·ǫ
X

)2
− ǫ2

(3)where:
• f is the fo
al length of the opti
al system,
• D is the opti
al system entran
e pupil diameter,
• ǫ is the imaging sensor pixel pit
h,
• Ns is the lateral extension of the sensor (in pixels),
• X is the lateral extension of the image �eld.Note that the term Ns·ǫ

X
is simply the opti
al magni�
ation M .Equation 3 
learly shows that a short depth of �eld is obtained with short fo
al length, high magni�
ation, andlarge entran
e pupil diameter. For multifo
us depth measurement, we are interested in having the shortest depthof �eld. But the entran
e pupil diameter is limited by weight 
onsiderations in a lo
al sensor. Similarly, redu
ingthe fo
al length will redu
e working distan
e for the sensor. The 
urve in �gure 3 shows predi
ted depth of �elda miniature imaging system when Ns, ǫ, D and f are �xed, and the opti
al magni�
ation M = Ns·ǫ

X
is variedto a

omodate for di�erent obje
t size into the �eld of view X . In this example, we 
hose Ns = 752, ǫ = 3 µm,

D = 7 mm, f = 15 mm (the values 
orrespond to the experimental system of se
tion 4), while the range for�eld dimension 
orresponds to the requirements in se
tion 2. Three magni�
ation values (M = 0.3, 1.0, 3.0) arereported on the 
urve.

Figure 3. (Plain 
urve) Depth of �eld expe
tation for miniature imaging system - (Asterisks) Measured depth a

ura
y(see se
tion 4.3)



Figure 4. Miniature imager with 15mm obje
tive3.5.1. Limitations of miniature multifo
us systemFigure 3 indi
ates that the depth resolution for a multifo
us system using a miniature imager is low when the�eld imaged is wide and it is high when the target �eld is narrow. For a 1 × 1mm �eld, the depth of �eld is
lose to the minimal expe
tation for verti
al a

ura
y de�ned in table 1 (10 µm). Note that the depth of �eld is
omparatively larger for miniature imagers, where the opti
al aperture is limited, when opposed to mi
ros
opesystems.Also, multifo
us 3D is a passive method, whi
h implies no illumination, and obje
t dependent 
ontrast. Thislimits the s
ope of appli
ations to obje
ts with su�
ient 
ontrast features. High a

ura
y is expe
ted with some
ontrast ri
h metalli
 surfa
es while uniform plasti
 surfa
es provide mu
h less a

ura
y.4. EXPERIMENTAL RESULTS4.1. Miniature system implementationThe implemented miniature imager uses a Kappa CH-166 mi
ro-
amera, that 
ontains an 1/6� CCD sensor withPAL resolution (752 × 582). The pixel pit
h is ǫx, ǫy = 3.0 µm × 3.0 µm. Depending on the �eld to 
over,di�erent opti
al magni�
ations M must be employed. The 
amera obje
tive has fo
al length f = 15 mm, andspa
er elements between obje
tive and sensor allow to span magni�
ations ranging from M = 0.25 to M ≈ 2.0.The mi
ro-
amera is shown on �gure 4. The mass of the imager devi
e (in
luding obje
tive) does not ex
eed
20 g. When 
ompared to the expe
tations in table 1, this indi
ates that a mass budget of 80 g 
an be spent onthe z-motor in the development of the embedded system. Note that 
urrently, our experimental setup uses mu
hbulkier motors (mass > 2 kg), sin
e our purpose is to evaluate the miniature imager only.The software 
omponent is realized as a C++ appli
ation on PC. This appli
ation 
ontrols 
amera displa
ement,image a
quisition, sharpness maximization, noise �ltering and display of range maps. Image a
quisition is per-formed through a Matrox Meteor II frame-grabber. The sharpness evaluation algorithms are implemented eitherwith MIL16 or OpenCV17, and sharpness maximization is performed in parallel with image sta
k a
quisition.Nevertheless, sharpness determination remains a time 
onsuming operation, espe
ially when a large kernel isused (a typi
al pro
essing time for an image (752 × 582) is 50 ms).4.2. Sample imagesWe present depth maps a
quired with the miniature imager system, whi
h illustrate the adequa
y of this 
om-ponent to the task proposed in se
tion 1. The �rst sample is a detail of a s
rew viewed from top (�gure 5), thatwas a
quired at high magni�
ation (M = 1.85). The dimensions of the s
ene Lx × Ly × Lz are approximately
1300 × 1000 × 2500µm3. This example shows the potential of the miniature system to provide a

urate depthdata at high resolution, for high aspe
t ratio s
enes. The 3D rendering allows to see that the system is ableto measure the slope in the s
rew spirals. The se
ond sample (�gure 6) was a
quired with low magni�
ation(M = 0.28). The image shows a random arrangement of nails, whi
h serves as an example of bulk part feeding



situation3. With range information, it is easy to distinguish the top nails from the bottom ones, so that anassembly robot 
an be programmed to automati
ally pi
k one of these parts for assembly.
(a) Mid-sta
k image (b)Range image (c) 3D renderingFigure 5. Sample image for miniature system : s
rew tip
(a) Mid-sta
k image (b)Range image (c) 3D renderingFigure 6. Sample image for miniature system : nails4.3. Depth a

ura
yA

ura
y evaluation is di�
ult for passive 3D measurement systems, sin
e range image quality depends onthe image 
ontents. To estimate depth a

ura
y, simple s
enes (des
ribed by a simple geometri
 model) aremeasured. The s
ene used in our experiments, shown on �gure 7 (a), features two identi
al disks, with diameter

19 mm. The height di�eren
e between the parts is 1.5 ± 0.1 mm. This s
ene was imaged with di�erent opti
al
on�gurations (labels 1 to 4 in image 7 and table 3), resulting in di�erent �elds of view (see �gure 7 (a)). Forea
h test s
ene, the number of images in the sta
k was 128, the s
anned depth range was ∆Z ≈ 2 mm. Thegeometri
 model for ea
h disk is a perfe
tly �at and horizontal surfa
e. In ea
h range map, two regions of interest(
overing approximately one quarter of the image �eld) are sele
ted: Rb (on the bottom disk) and Rt (on the topdisk) . The a

ura
y is estimated as the range standard deviation σ, averaged for those two regions of interest :
σ =

σl + σh

2
(4)Measurement results are summarized in table 3, whi
h also re
alls a

ura
y values obtained with high-performan
emultifo
us mi
ros
ope systems [8], as referen
e values. A

ura
y results for s
enes 1 to 4 were also reported onTable 3. Measurements with miniature imager (1 to 4), 
ompared to a

ura
y obtained with mi
ros
ope setups8 (5, 6)S
ene 1 2 3 4Imager Miniature Miniature Miniature MiniatureField of view [mm] 6.7 × 5.1 3.4 × 2.6 2.2 × 1.7 1.3 × 1.0Magni�
ation 0.36 0.72 1.10 1.85

σ[µm] 160 78 28 20

5 6MZ12 DMLA
0.9 × 0.9 0.3 × 0.3

10.0 31.0
5 2



(a) (b)Figure 7. A


ura
y measurement (Sta
ked metal disks) - (a) top view of the s
ene - (b) 3D rendering of measured rangedata for di�erent �elds of view (see table 3)�gure 3, where they 
an be 
ompared to the depth of �eld values. As expe
ted, the highest depth a

ura
y isobtained for narrowest �eld of view. The best a

ura
y obtained with our miniature imager is 20µm. This resultdoes not 
omply with the expe
tations of table 1 (a fa
tor of 2 is missing). Figure 8 shows a 
omparison of tests
enes a
quired with miniature imager or mi
ros
ope. A bulky mi
ros
ope is 10 times more a

urate (DMLA8).However, su
h a mi
ros
ope is typi
ally heavier than 3 kg. The observed 10-fold redu
tion in a

ura
y follows a
150-fold redu
tion in mass. Su
h a tradeo� is ne
essary if an embedded system is to be developped.

Figure 8. Range image a
quired with miniature system (left) - Range image a
quired with mi
ros
ope system (right)5. PERSPECTIVESAs mentioned above, the design of an embedded 3D vision sensor is far from 
omplete. Many 
hallenges remain ifall expe
tations de�ned in table 1 are to be met. Table 4 summarizes the performan
e of the developped systemand lists some perspe
tives for improvement in ea
h area.



Table 4. Present performan
e of mutlifo
us system, with perspe
tives for improvement.Property Expe
tation Current implemen-tation Improvement byMass m ≤ 100 g m > 2000 g (imager :
20 g , motor : 2000 g

Low-mass z-motorSpatial resolution rx, ry , rz ≥ 0.1 µm−1 rx, ry, rz = 0.6 × 0.6 ×
0.05 µm−3

(Higher opti
al aperture)Volume imaged Lx, Ly, Lz ≥ 1 mm Lx, Ly, Lz = 1.3×1.0×
3.0 mm3Frame rate R ≥ 10 fps R < 0.25 fps Fast z-motor, fast 
amera, ROI pro-
essing, on-
hip 
ontrast pro
essing5.1. Low-mass multifo
us motorWe have seen that multifo
us with a miniature imager 
an rea
h a

ura
y spe
i�
ations in the order of 20 µm,with a mass budget of 20 g for the imager. The following step in development of an embedded multifo
us sensoris the sele
tion of an appropriate z-motor, 
apable of moving this 20 g imager mass over a stroke of 5 mm ormore, while the motor mass stays under 80 g. This step is required for the 
ompletion of a �rst embedded 3Dsensor prototype. Apart from mass, 
riteria to 
onsider for motor sele
tion are : linear a

ura
y, length of stroke,and speed of operation. For a �rst embedded prototype, mass and linear a

ura
y are 
onsidered 
riti
al, whilelength of stroke and speed of operation are se
ondary.5.2. High-frame rate imagingIn order to meet the frame rate spe
i�
ation of table 1, additional steps are required. First, the z-motor must movethe imager pa
kage with 10Hz period. Se
ond, the image sensor must a
quire images at a rate of 200fps (underthe assumption that one range image requires a sta
k of 20 2D images). Finally, the software 
omponent must
ompute sharpness images at the same rate, i.e. in less than 5 ms. To rea
h this goal, sharpness determination
ould be performed on a small region of the image only (using a 200 × 200 region of interest allows to redu
ethe 
omputation time by a fa
tor higher than 10). Alternatively, smart imagers with on-
hip pro
essing 
ouldbe used to speed up the 
omputation of sharpness values.6. CONCLUSIONThis paper is a 
ontribution to the development of a 3D vision system suited for a mi
ro-assembly robot. Thepresented analysis of typi
al requirements shows that mass limitations are most 
riti
al. Mass 
onsiderationsmotivated the sele
tion of the multifo
us approa
h for depth determination. During the �rst step of developmentpresented in this paper, a multifo
us system using miniature image sensor and opti
al imaging system, but bulkyz-motor, was realized, in order evaluate the performan
e of a miniature imager.Experiment results showed that the depth a

ura
y for the system with miniature imager (mass < 20 g) is 
loseto 20 µm, whi
h represents degradation in performan
e by a fa
tor of about 10 when 
ompared with a 
lassi
alsystem based on a bulky mi
ros
ope. The next step identi�ed in the design of an embedded 3D sensor based onthe multifo
us approa
h is the integration of a low-mass z-motor. Finally, a fully fun
tional embedded 3D sensorsupposes real-time pro
essing. Two possibilities are 
onsidered for this step: limitation of the �eld of view to a

200 × 200 region of interest, or on-
hip pro
essing for sharpness 
al
ulation by a dedi
ated imager.ACKNOWLEDGMENTSThis work was realized in 
ollaboration with Centre Suisse d'Ele
tronique et de Mi
rote
hnique SA, Switzerland.
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