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Abstract

In this paper we build a Continuous Wavelet Transform (CWT) on the upper sheet
of the 2-hyperboloid H2

+. First, we define a class of suitable dilations on the hyper-
boloid through conic projection. Then, incorporating hyperbolic motions belonging
to SO0(1, 2), we define a family of hyperbolic wavelets. The continuous wavelet
transform Wf (a, x) is obtained by convolution of the scaled wavelets with the sig-
nal. The wavelet transform is proved to be invertible whenever wavelets satisfy a
particular admissibility condition, which turns out to be a zero-mean condition. We
then provide some basic examples and discuss the limit at null curvature.

Key words: non-commutative harmonic analysis, wavelets, Fourier-Helgason
transform

1 Introduction

The continuous wavelet transform is already a well established procedure for
analysing data. Its main advantages over the classical Fourier transform are its
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local and multiresolution nature, which provide the interesting properties of
a mathematical microscope. Its theory is well known in the case of the line or
other higher dimensional Euclidean spaces [Antoine et al., 2005, Mallat, 1998]
and the wavelet transform has certainly become a standard in data analysis.
However, data analysis has undergone deep changes recently and the field faces
new exciting challenges. On one hand the volume of data is exploding due to
the ubiquity of digital sensors (just think of digital cameras). The first chal-
lenge resides in extracting information from very high dimensional data. On
the other hand, the type of data has also evolved tremendously over the past
few decade, from images or volumetric data to non-scalar valued signals. One
can cite for example tensor diffusion imaging, a new modality in medical imag-
ing [Hagmann et al., 2003], or multimodal signals, i.e signals obtained when
the same physical scene is observed through different sensors. Finally, there
are instances where data are collected on a surface, or more generally a mani-
fold, or through a complicated interface (think of the human eye for example).
This is often the case in astrophysics and cosmology [Martinez-Gonzalez et al.,
2002, Cayon et al., 2003], geophysics but also in neurosciences [Angenent et al.,
1999], computational chemistry [Max and Getzoff, 1988] ... The list is truly
endless. The second challenge thus resides in the complexity of data sources
and a field one could call Complex Data Processing might be emerging.

A given feature shared by all these problems is the importance of geometry :
either important information is localized around highly structured submani-
folds, or data types obey intrinsic nonlinear constraints. As a consequence of
the challenges in complex data processing, the representation and analysis of
signals in non-Euclidean geometry is now a recurrent problem in many sci-
entific domains. Because of these demands, spherical wavelets [Antoine and
Vandergheynst, 1999] were recently developed and applied in various fields,
from Cosmology [McEwen et al., 2004] to Computer Vision [Tosic et al., 2005].

Although the sphere is a manifold most desirable for applications, the mathe-
matical analysis made so far invites us to consider other manifolds with similar
geometrical properties, and first of all, other Riemannian symmetric spaces of
constant curvature. Among them, the two-sheeted hyperboloid H2 stands as a
very interesting case. For instance, such a manifold may be viewed as the phase
space for the motion of a free particle in 1+1-anti de Sitter spacetime [Gazeau
et al., 1989, Gazeau and Hussin, 1992]. Other examples come from physical
systems constrained on a hyperbolic manifold, for instance, an open expand-
ing model of the universe. A completely different example of application is
provided by the emerging field of catadioptric image processing [Makadia and
Daniilidis, 2003, Daniilidis et al., 2002]. In this case, a normal (flat) sensor is
overlooking a curved mirror in order to obtain an omnidirectional picture of
the physical scene. An efficient system is obtained using a hyperbolic mirror,
since it has a single effective viewpoint. Finally, from a purely conceptual point
of view, having already built the CWT for data analysis in Euclidean spaces
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and on the sphere, it is natural to raise the question of its existence and form
on the dual manifold.

In general, for constructing a CWT on H2, few basic requirements should be
satisfied

• wavelets and signals must “live” on the hyperboloid;
• the transform must involve dilations of some kind; and
• the CWT on H2 should reduce locally to the usual CWT on the plane.

The paper is organized as follows. In Section 2 we sketch the geometry of
the two-sheeted hyperboloid H2. In Section 3 we define affine transformations
on the upper sheet H2

+ of H2. There are two fundamental operations : dila-
tions and hyperbolic motions represented by the group SO0(1, 2). Then, the
action of the dilation on the hyperboloid is derived in Section 4. In Section 5,
harmonic analysis on the hyperboloid is introduced by means of the Fourier-
Helgason transform : this is a central tool for constructing and studying the
wavelet transform. Section 6 really constitutes the core of this paper. First
we define the CWT on H2

+ through a hyperbolic convolution. Then we prove
a hyperbolic version of the Fourier convolution theorem which allows us to
work conveniently in the Fourier-Helgason domain. Theorems 4 and 5 are our
main results. We would like to state them roughly here in order to wet our
readers’ appetite since these results are reminiscent of their Euclidean coun-
terparts. The first one states a generic admissibility condition for the existence
of hyperbolic wavelets :

Featured Theorem 1 (Admissible wavelets) Let ψ be a compactly sup-
ported, square integrable, continuous function on H2

+ whose Fourier-Helgason
coefficients satisfy :

0 < Aψ(ν) =
∫ ∞

0
|ψ̂a(ν)|2α(a) da < +∞,

where a �→ α(a) is a positive continuous function on R+
∗ . Then the hyperbolic

wavelet transform is a bounded operator from L2(H2
+) to a subset of L2(R+

∗ ×
SO0(1, 2)) that is invertible on its range.

Our second featured theorem shows that the admissibility condition simplifies
to a zero-mean condition and really motivates the wavelet terminology.

Featured Theorem 2 (Zero-Mean Condition) Moreover, if α(a)da is a
homogeneous measure of the form a−βda, β > 2, then the following zero-mean
condition has to be satisfied :

A square integrable function on H2
+ with bounded support is a wavelet if its
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Fig. 1. Geometry of the 2-hyperboloid.

integral vanishes when it is conveniently weighted, that is

∫
H2

+

dµ(χ, ϕ)

[
sinh 2pχ

sinh χ

] 1
2

ψ(χ, ϕ) = 0,

for p > 0.

Finally we conclude this paper with illustrating examples of hyperbolic wavelets
and wavelet transforms and give directions for future work.

2 Geometry of the two-sheeted hyperboloid. Projective structures.

We start by recalling basic facts about the upper sheet of the two-sheeted
hyperboloid of radius ρ, H2

+ρ. Let χ, ϕ be a system of polar coordinates for
H2

+ρ. To each point θ = (χ, ϕ) we shall associate the vector x = (x0, x1, x2) of
R3 given by

x0 = ρ cosh χ,

x1 = ρ sinh χ cos ϕ, ρ > 0, χ � 0, 0 ≤ ϕ < 2π,

x2 = ρ sinh χ sin ϕ,

where χ � 0 is the arc length from the pole to the given point on the hyper-
boloid, while ϕ is the arc length over the equator, as shown in Figure 1. The
meridians (ϕ = const) are geodesics.

The squared metric element in hyperbolic coordinates is:

(ds)2 = −ρ2

(
(dχ)2 + sinh2 χ(dϕ)2

)
, (1)
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Fig. 2. Cross-section of a conic projection

called Lobachevskian metric, whereas the measure element on the hyperboloid
is

dµ = ρ2 sinh χdχdϕ. (2)

In the sequel, we shall put ρ = 1 for convenience and designate the unit
hyperboloid H2

+ρ=1 by H2
+.

Various projections can be used to endow H2
+ with a local Euclidean structure.

One of them is immediate : it suffices to flatten the hyperboloid onto R2 � C.
Another possibility is to project the hyperboloid onto a cone. Let us consider
a half null cone C2

+ ∈ R3 of equation (x0)
2 − 1

tan ψ0
((x1)

2 + (x2)
2) = 0, x0 � 0.

This cone C2
+ has Euclidean nature. The cone surface unrolled is a circular

sector and all points of H2
+ will be mapped onto C2

+ using a specific conic
projection. The characteristic parameter of a conic projection is the constant
of the cone m = cos ψ0, where ψ0 is the Euclidean angle of inclination of the
generatrix of the cone as shown in Figure 2.

Considering a radial conic projection, it is more convenient to use a radius r
defined by the Euclidean distance between a point on the cone, conic projection
of the point (χ, ϕ) ∈ H2

+, and the x0-axis:

r = f(χ), dr = f ′(χ)dχ with
dr

dχ

∣∣∣∣∣
χ=0

= 1. (3)

Each suitable projection is determined by a specific choice of f(χ). It is clear
that dilation of the cone C2

+ �→ aC2
+ = C2

+ entails r �→ ar. Consequently, the
resulting map χ �→ χa is determined by f(χa) = af(χ). This is precisely the
point at the heart of our approach and we shall discuss this more precisely in
Section 4.

5



3 Affine transformations on the 2-hyperboloid

We recall that our purpose is to build a total family of functions in L2(H2
+, dµ)

by picking a wavelet or probe ψ(χ) with suitable localization properties and
applying on it hyperbolic motions, belonging to the group SO0(1, 2), supple-
mented by appropriate dilations

ψ(x) → λ(a, x)ψ(d1/ag
−1x) ≡ ψa,g(x), g ∈ SO0(1, 2), a ∈ R+

∗ . (4)

Dilations da will be studied below. Hyperbolic rotations and motions, g ∈
SO0(1, 2), act on x in the following way.

A motion g ∈ SO0(1, 2) can be factorized as g = k1hk2, where k1, k2 ∈
SO(2), h ∈ SO0(1, 1), and the respective action of k and h are the following

k(ϕ0).x(χ, ϕ) =


1 0 0

0 cos ϕ0 − sin ϕ0

0 sin ϕ0 cos ϕ0




cosh χ

sinh χ cos ϕ

sinh χ sin ϕ

 (5)

= x(χ, ϕ + ϕ0), (6)

h(χ0).x(χ, ϕ) =


cosh χ0 sinh χ0 0

sinh χ0 cosh χ0 0

0 0 1




cosh χ

sinh χ cos ϕ

sinh χ sin ϕ

 (7)

= x(χ + χ0, ϕ) . (8)

On the other hand, the dilation is a homeomorphism da : H2
+ → H2

+ and we
require that da fulfills the two conditions:

(i) it monotonically dilates the azimuthal distance between two points on H2
+:

dist(da(x), da(x
′)), (9)

where dist(x, x′) is defined by

dist(x, x′) = cosh−1 (x · x′), (10)

and the dot product is the Minkowski product in R3; note that dist(x, x′)
reduces to |χ − χ′| when ϕ = ϕ′;

(ii) it is homomorphic to the group R+
∗ ;

R+
∗ � a → da, dab = dadb, da−1 = d−1

a , d1 = Id.
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The action of a motion on a point x ∈ H2
+ is trivial: it displaces (rotates) by

a hyperbolic angle χ ∈ R+ (respectively by an angle ϕ). It has to be noted
that, as opposed to the case of the sphere, attempting to use the conformal
group SO0(1, 3) for describing dilation, our requirements are not satisfied.
In particular, conformal dilations do not preserve the upper sheet H2

+ of the
hyperboloid. In this paper we adopt an alternative procedure that describes
different maps for dilating the hyperboloid.

4 Dilations on hyperboloid

Considering the half null-cone of equation

C2
+ =

{
ξ ∈ R3 : ξ · ξ = ξ2

0 − ξ2
1 − ξ2

2 = 0, ξ0 > 0

}
, (11)

there exist the SO0(1, 2)-motions and the obvious Euclidean dilations

ξ ∈ C2
+ → aξ ∈ C2

+ ≡ d
C2

+
a (ξ), (12)

which form a multiplicative one-parameter group isomorphic to R+
∗ .

In order to lift dilation (12) back to H2
+, it is natural to use possible conic

projections of H2
+ onto C2

+, as defined in Section 2.

H2
+ � x → Φ(x) ∈ C2

+ → Π0Φ(x) ∈ R2 � C, (13)

where Π0 stands for flattening, defined by

Π0Φ(x) : x(r, ϕ) ∈ C2
+ �→ reiϕ ∈ C. (14)

Flattening reveals the Euclidean nature of the conic projection and the full
action of (14) is depicted on Figure 3. Then, we might wish to find a form of
Π0Φ such that, expressed in polar coordinates, the measure is

dµ = rdrdϕ. (15)

In this case, dilating r will quadratically dilate the measure dµ as well. By
expressing the measure (15) with the radius defined in (3) we obtain

f(χ)f ′(χ) = sinh χ =⇒ f(χ) = 2 sinh
χ

2
. (16)

Consequently, the radius of this particular conic projection is r = 2 sinh χ
2
.
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Fig. 3. Conic projection and flattening.

Thus, this conic projection Φ : H2
+ → C2

+ is a bijection given, after flattening,
by

Π0Φ(x) = 2 sinh
χ

2
eiϕ,

with x ≡ (χ, ϕ), χ ∈ R+, 0 ≤ ϕ < 2π.

Then, the lifted dilation is of the form

sinh
χa

2
= a sinh

χ

2
. (17)

This particular example leads us to consider the following family of conic
projections and flattening indexed by a positive parameter p :

H2
+ � x = x(χ, ϕ) → Π0Φ(x) =

1

p
sinh pχeiϕ = reiϕ ∈ C. (18)

The action of Φ for different values of the conic projection parameter p is
shown on Figure 4.

The invariant metric and measure on H2
+, respectively (1) and (2), are then

transformed into

(ds)2 →−
(

1

1 + p2r2
(dr)2 +

1

4

(
�(r)2 + (�(r))−2 − 2

)
(dϕ)2

)
, (19)

dµ(χ, ϕ)→ 1

2

�(r) − (�(r))−1

√
1 + p2r2

drdϕ, (20)

where �(r) = 1/p
√

pr +
√

1 + p2r2. This also shows that this class of dilations
is not conformal.
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Fig. 5. Action of a dilation a on the hyperboloid H2
+ by conic projection with

parameter p = 1 .

The action of dilation by conic projection is given by

sinh pχa = a sinh pχ (21)

The particular case p = 1 is depicted in Figure 5. The dilated point xa ∈ H2
+

is

xa = (cosh χa, sinh χa cos ϕ, sinh χa sin ϕ), (22)

with polar coordinates θa = (χa, ϕ). The behaviour of dist(xN, xa), with xN

being the North Pole, is shown in Figure 6 in the case p = 0.1, p = 0.5 and
p = 1. We can see that this is an increasing function with respect to the
dilation a.

It is also interesting to compute the action of dilations in the bounded version
of H2

+. The latter is obtained by applying the stereographic projection from
the South Pole of H2 and it maps the upper sheet H2

+ onto the open unit disc
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Fig. 6. Analysis of the distance (9) as a function of dilation a, with xN being the
North Pole and using conic projection for different parameter p.

in the equatorial plane:

x = x(χ, ϕ) → Φ(x) = tanh
χ

2
eiϕ. (23)

In the case p = 1
2

by using (17) and basic trigonometric relations, we obtain

tanh
χa

2
=

√√√√ a2 tanh2 χ
2

1 + (a2 − 1) tanh2 χ
2

≡ ζ. (24)

In this case, the dilation leaves invariant both ζ = 0 and ζ = 1, the center
and the border of the disc, respectively. Figure 7 depicts the action of this
transformation on a point x ∈ H2

+. A dilation from the North Pole (DN) is
considered as a dilation in the unit disc in equatorial plane and lifted back
to H2

+ by inverse stereographic projection from the South Pole. A dilation
from any other point x ∈ H2

+ is obtained by moving x to the North Pole by
a rotation g ∈ SO0(1, 2), performing dilation DN and going back by inverse
rotation:

Dx = g−1DNg.

The visualization of the dilation on the hyperboloid H2
+, with p = 0.5, is

provided in Figure 8. There, each circle represents points on the hyperboloid
at constant χ and is dilated by the scale factor a = 0.75.
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Fig. 8. Visualization of the dilation on the hyperboloid H2
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2 ).

5 Harmonic analysis on the 2-hyperboloid

5.1 Fourier-Helgason Transform

This integral transform is the precise analog of the Fourier-Plancherel trans-
form on Rn. It consists of an isometry between two Hilbert spaces

FH : L2(H2
+, dµ) −→ L2(L, dη), (25)
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where the measure dµ is the SO0(1, 2)-invariant measure on H2
+ and L2(L, dη)

denotes the Hilbert space of sections of a line-bundle L over another suitably
defined manifold, the so-called Helgason-dual of H2

+ and denoted by Ξ. We
note here that Rn is its own Helgason-dual.

Let us see what is the concrete realization of the dual space Ξ. Most of the
following discussion can be found in [Ali and Bertola, 2002], and we summarize
it here for convenience. In fact Ξ can be realized as the projective half null-
cone, as defined in (11) and asymptotic to H2

+, times the positive real line.
The space Ξ is given by

Ξ = R+ × PC+ ≡ {k = (ν, �ξ)}, (26)

where PC+ denotes the projective forward cone {ξ ∈ C2
+ | λξ ≡ ξ, λ >

0, ξ0 > 0} (the set of “rays” on the cone). A convenient realization of PC+

makes it diffeomorphic to the 1-sphere S1 as follows

PC+ �{�ξ ∈ R2 : ‖�ξ‖ = 1} ∼ S1 (27)

ξ ≡ (ξ0, �ξ) = (ξ0, ξ1, ξ2) �→ 1

ξ0

�ξ. (28)

The Fourier - Helgason transform is defined in a way similar to the ordinary
Fourier transform by using the eigenfunctions of the invariant differential op-
erator of second order, i.e. the Laplacian on H2

+. In our case, the functions of
the (unique) invariant differential operator are named hyperbolic plane waves
[Bros et al., 1994]

Eν,ξ(x) = (ξ · x)−
1
2
−iν , ν ∈ R+, ξ ∈ C2

+. (29)

These waves are not parametrized by points of R+×PC+ but rather by points
of R+ × C2

+; however the action of R+ on C2
+ just rescales them by a factor

which is constant in x ∈ H2
+. In other words, they are sections of an appropri-

ate line-bundle over Ξ, which we denote by L, and C2
+ is thought of as total

space of R+ over PC+. As well, we note that the inner product ξ ·x is positive
on the product space C2

+ × H2
+, so that the complex exponential is uniquely

defined.

Let us express the plane waves in polar coordinates for a point x ≡ (x0, �x) ∈
H2

+
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Eν,ξ(x) = (ξ · x)−
1
2
−iν (30)

≡
(

cosh χ −
�ξ · �x
ξ0

)− 1
2
−iν

(31)

= (cosh χ − (n̂ · x̂) sinh χ)−
1
2
−iν , (32)

where n̂ ∈ S1 is a unit vector in the direction of �ξ and x̂ ∈ S1 is the unit
vector in the direction of �x. Applying any rotation � ∈ SO(2) ⊂ SO0(1, 2) on
this wave, it immediately follows

R(�) : Eν,ξ(x) → Eν,ξ(�
−1 · x) = Eν,�·ξ(x). (33)

Finally, the Fourier - Helgason transform FH and its inverse FH−1 are defined
as

f̂(ν, ξ) ≡ FH[f ](ν, ξ)=
∫

H2
+

f(x)(x · ξ)− 1
2
+iνdµ(x), ∀f ∈ C∞

0 (H2
+), (34)

FH−1[g](x)=
∫
jΞ

g(ν, ξ)(x · ξ)− 1
2
−iνdη(ν, ξ), ∀g ∈ C∞

0 (L), (35)

where C∞
0 (L) denotes the space of compactly supported smooth sections of

the line-bundle L. The integration in (35) is performed along any smooth
embedding jΞ into the total space of the line-bundle L and the measure dη is
given by

dη(ν, ξ) =
dν

|c(ν)|2 dσ0, (36)

with c(ν) being the Harish-Chandra c-function [Helgason, 1994]

c(ν) =
2iνΓ(iν)√
πΓ(1

2
+ iν)

. (37)

The factor |c(ν)|−2 can be simplified to

|c(ν)|−2 = ν sinh (πν)|Γ(
1

2
+ iν)|2. (38)

The 1-form dσ0 in the measure (36) is defined on the null cone C2
+, it is closed

on it and hence the integration is independent of the particular embedding of
Ξ. Thus, such an embedding can be the following

j : Ξ−→R+ × C2
+, (39)

(ν, ξ) �→ (ν, (1,
ξ1

ξ0

,
ξ2

ξ0

)) = (ν, (1, ξ̂)). (40)
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Note that the transform FH maps functions on H2
+ to sections of L and the

inverse transform maps sections to functions. Thus, we have

Proposition 1 [Helgason, 1994] The Fourier-Helgason transform defined in
equations (34, 35) extends to an isometry of L2(H2

+, dµ) onto L2(L, dη) so
that we have ∫

H2
+

|f(x)|2dµ(x) =
∫
jΞ
|f̂(ξ, ν)|2dη(ξ, ν). (41)

6 Continuous Wavelet Transform on the Hyperboloid

One way of constructing the CWT on the hyperboloid H2
+ would be to find a

suitable group containing both SO0(1, 2) and the group of dilations, and then
find its square-integrable representations in the Hilbert space ψ ∈ L2(H2

+, dµ),
where dµ is the normalized SO0(1, 2)-invariant measure on H2

+. We will take
another approach by directly studying the following wavelet transform∫

ψa,g(x)f(x)dµ(x) = 〈ψa,g, f〉,

where the notation ψa,g has been introduced in (4) and will be now made
more precise in terms of group representation. Looking at pseudo-rotations
(motions) only, we have the unitary action :

[Ugψ](x) = f(g−1x), g ∈ SO0(1, 2), ψ ∈ L2(H2
+, dµ). (42)

Clearly, Ug is a quasi-regular representation of SO0(1, 2) on L2(H2
+).

We now have to incorporate the dilation. However, the measure dµ is not dila-
tion invariant, so that a Radon-Nikodym derivative λ(a, x) must be inserted,
namely:

λ(a, x) =
dµ(a−1x)

dµ(x)
, a ∈ R+

∗ . (43)

The function λ is a 1-cocycle and satisfies the equation

λ(a1a2, x) = λ(a1, x)λ(a2, a
−1
1 x). (44)

In the case of dilating the hyperboloid through conic dilation with parameter
p > 0, we have

λ(a, χ) =
d cosh χ1/a

d cosh χ
=

1

a

sinh χ1/a

sinh χ

cosh pχ

cosh pχ1/a

, (45)

with sinh pχ1/a = 1
a
sinh pχ. Note here that the case p =

1

2
is unique in the

sense that λ(a, χ) does not depend on χ : λ(a, χ) = a−2. In the case p = 1, we
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get the more elaborate expression

λ(a, χ) =
d cosh χ1/a

d cosh χ
=

cosh χ

a2
√

1 + a−2 sinh2 χ
. (46)

Thus, the action of the dilation operator on the function is

Daψ(x) ≡ ψa(x) = λ
1
2 (a, χ)ψ(d−1

a x) = λ
1
2 (a, χ)ψ(x 1

a
) (47)

with xa ≡ (χa, ϕ) ∈ H2
+ and it reads

ψa(x) =

√√√√1

a

sinh χ1/a

sinh χ

cosh pχ

cosh pχ1/a

ψ(x 1
a
).

One easily checks using (45) that Da is unitary in L2(H2
+).

Finally, the hyperbolic wavelet function can be written as

ψa,g(x) = UgDaψ(x) = Ugψa(x).

Accordingly, the hyperbolic continuous wavelet transform of a signal (function)
f ∈ L2(H2

+) is defined as:

Wf (a, g)= 〈ψa,g|f〉 (48)

=
∫

H2
+

[UgDaψ](x)f(x)dµ(x) (49)

=
∫

H2
+

ψa(g−1x)f(x)dµ(x) (50)

where x ≡ (χ, ϕ) ∈ H2
+ and g ∈ SO0(1, 2).

In the next section, we show how this expression can be conveniently inter-
preted and studied as a hyperbolic convolution.

6.1 Convolutions on H2

Since H2
+ is a homogeneous space of SO0(1, 2), one can easily define a convo-

lution. Indeed, let f ∈ L2(H2
+) and s ∈ L1(H2

+), their hyperbolic convolution
is the function of g ∈ SO0(1, 2) defined as

(f ∗ s)(g) =
∫

H2
+

f(g−1x)s(x)dµ(x). (51)
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Then f ∗ s ∈ L2(SO0(1, 2), dg) , where dg stands for the Haar measure on the
group and

‖f ∗ s‖2 ≤ ‖f‖2‖s‖1, (52)

by the Young convolution inequality.

In this paper however, we will deal with a simpler definition where the convolu-
tion is a function defined on H2

+. Let [·] : H2
+ −→ SO0(1, 2) be a section in the

fiber bundle defined by the group and its homogeneous space. In the following
we will make use of the Euler section, whose construction is now presented.
Recall from Section 3 that any g ∈ SO0(1, 2) can be uniquely decomposed as
a product of three elements g = k(ϕ)h(χ)k(ψ). Using this parametrization,
we thus define :

[·] :H2
+ −→ SO0(1, 2)

[·] :x(χ, ϕ) �→ g = k(ϕ)h(χ) = [x] .

The hyperbolic convolution, restricted to H2
+, thus takes the following form:

(f ∗ s)(y) =
∫

H2
+

f([y]−1x)s(x)dµ(x), y ∈ H2
+ .

We will mostly deal with convolution kernels that are axisymmetric (or rota-
tion invariant) functions on H2

+ (i.e. functions of the variable χ alone). The
Fourier-Helgason transform of such an element has a simpler form as shown
by the following proposition.

Proposition 2 If f is a rotation invariant function, i.e. f(�−1x) = f(x), ∀ρ ∈
SO(2), its Fourier-Helgason transform f̂(ξ, ν) is a function of ν alone, i.e.
f̂(ν).

Proof : Applying the Fourier-Helgason transform on a rotation-invariant func-
tion we write:

f̂(ξ, ν)=
∫

H2
+

f(x) Eξ,ν(x)dµ(x) (53)

=
∫

H2
+

f(�−1x)(ξ · x)−
1
2
−iνdµ(x), ξ ∈ PC+, ρ ∈ SO(2) (54)

=
∫

H2
+

f(x′)(ξ · �x′)−
1
2
−iνdµ(x′) (55)

= f̂(�−1ξ, ν), (56)

and so f̂(ξ, ν) does not depend on ξ. �
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We now have all the basic ingredients for formulating a useful convolution
theorem in the Fourier-Helgason domain. As we will now see the FH transform
of a convolution takes a simple form, provided one of the kernels is rotation
invariant.

Theorem 3 (Convolution) Let f and s be two measurable functions, with
f, s ∈ L2(H2

+) and let s be rotation invariant. The convolution (s ∗ f)(y) is in
L1(H2

+) and its Fourier-Helgason transform satisfies

(̂s ∗ f)(ν, ξ) = f̂(ν, ξ) ŝ(ν). (57)

Proof : The convolution of s and f is given by:

(s ∗ f)(y) =
∫

H2
+

s([y]−1x)f(x)dµ(x).

Since s is SO(2)-invariant, we write its argument in this equation in the fol-
lowing way :

cosh χ − sinh χ 0

− sinh χ cosh χ 0

0 0 1




x0

x1

0

 =


x0 cosh χ − x1 sinh χ

−x0 sinh χ + x1 cosh χ

0

 , (58)

where x = (x0, x1, x2) and we have used polar coordinates for y = y(χ, ϕ). On
the other hand we can alternatively write this equation in the form :

x0 cosh χ − x1 sinh χ

−x0 sinh χ + x1 cosh χ

0

 =


x0 −x1 0

−x1 x0 0

0 0 1




cosh χ

sinh χ

0

 . (59)

Thus we have

s([y]−1x) = s([x]−1y). (60)

Therefore, the convolution with a rotation invariant function is given by

(s ∗ f)(y)=
∫

H2
+

f(x)s([y]−1x) dµ(x) (61)

=
∫

H2
+

f(x)s([x]−1y) dµ(x). (62)
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On the other hand, applying the Fourier-Helgason transform on s ∗ f we get

(̂s ∗ f)(ν, ξ)=
∫

H2
+

(s ∗ f)(y)(y · ξ)− 1
2
−iνdµ(y)

=
∫

H2
+

dµ(y)
∫
H2

+

dµ(x)s([y]−1x)f(x)(y · ξ)− 1
2
−iν

=
∫

H2
+

dµ(x)f(x)
∫

H2
+

dµ(y)s([y]−1x)(y · ξ)− 1
2
−iν

=
∫

H2
+

dµ(x)f(x)
∫

H2
+

dµ(y)s([x]−1y)(y · ξ)− 1
2
−iν

=
∫

H2
+

dµ(x)f(x)
∫

H2
+

dµ(y)s(y)([x]y · ξ)− 1
2
−iν

=
∫

H2
+

dµ(x)f(x)
∫

H2
+

dµ(y)s(y)(y · [x]−1ξ)−
1
2
−iν .

Since ξ belongs to the projective null cone, we can write

(y · [x]−1ξ) = ([x]−1ξ)0

(
y · [x]−1ξ

([x]−1ξ)0

)
, (63)

and using ([x]−1ξ)0 = (x · ξ), we finally obtain

(̂s ∗ f)(ν, ξ)=
∫

H2
+

dµ(x)f(x)(x · ξ)− 1
2
+iν

∫
H2

+

dµ(y)s(y)

(
y · [x]−1ξ

([x]−1ξ)0

)− 1
2
−iν

= f̂(ν, ξ)ŝ(ν)

where we used the rotation invariance of s. �

Based on Theorem 3, we can write the hyperbolic continuous wavelet trans-
form of a function f with respect to an axisymmetric wavelet ψ as

Wf(a, g) ≡ Wf (a, [x]) =
(
ψ̄a ∗ f

)
(x). (64)

6.2 Wavelets on the hyperboloid

We now come to the heart of this paper : we prove that the hyperbolic wavelet
transform is a well-defined invertible map, provided the wavelet satisfies an
admissibility condition.

Theorem 4 (Admissibility condition) Let ψ ∈ L1(H2
+) be an axisymmetric

function, a �→ α(a) a positive function on R+
∗ and m, M two constants such
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that

0 < m ≤ Aψ(ν) =
∫ ∞

0
|ψ̂a(ν)|2 α(a)da ≤ M < +∞. (65)

Then the linear operator Aψ defined by :

Aψf(x′) =
∫

R
∗
+

∫
H2

+

Wf (a, x)ψa,x(x
′)dxα(a)da, (66)

where ψa,x ≡ ψa,[x], is bounded and with bounded inverse. More precisely Aψ

is univocally characterized by the following Fourier-Helgason multiplier :

Âψf̂(ν, ϕ) ≡ Âψf(ν, ϕ) = f̂(ν, ϕ)
∫ ∞

0
|ψ̂a(ν)|2 α(a)da = Aψ(ν)f̂(ν, ϕ).

Proof : Let the wavelet transform Wf be defined as in equation (64) and
consider the following quantity :

∆a(x
′) =

∫
H2

+

Wf (a, x)ψa,x(x
′)dx. (67)

A close inspection reveals that ∆a(x
′) is itself a convolution. Taking the

Fourier-Helgason transform on both sides of (67) and applying Theorem 3
twice, we thus obtain:

∆̂a(ν, ϕ) = |ψ̂a(ν)|2f̂(ν, ϕ) .

Finally, integrating over all scales we obtain :∫
R
∗
+

α(a)da ∆̂a(ν, ϕ) = f̂(ν, ϕ)
∫

R
∗
+

α(a)da |ψ̂a(ν)|2 (68)

which is the expected result. �

There are three important remarks concerning this result. First, Theorem 4
shows that the wavelet family {ψa,x, a ∈ R+

∗ , x ∈ H2
+} forms a continuous

frame [Ali et al., 2000] provided the admissibility condition (65) is satisfied.
In this case, the wavelet transform Wf of any f can be inverted in the following

way. Let ψ̃a,x be a reconstruction wavelet defined by :

̂̃
ψa,x(ν) = A−1

ψ (ν)ψ̂a,x(ν).

As a direct consequence of Theorem 4, the inversion formula, to be understood
in the strong sense in L2(H2

+), reads :

f(x′) =
∫

R
∗
+

∫
H2

+

Wf(a, x)ψ̃a,x(x
′)dxα(a)da . (69)

19



As a second remark, the reader can check that Theorem 4 does not depend on
choice of dilation! This is not exactly true, actually. The architecture of the
proof does not depend on the explicit form of the dilation operator, but the
admissibility condition explicitly depends on it. As we shall see later, it will
be of crucial importance when trying to construct admissible wavelets. Finally
the third remark concerns the somewhat arbitrary choice of measure α(a) in
the formulas. The reader may easily check that the usual 1-D wavelet theory
can be formulated along the same lines, keeping an arbitrary scale measure.
In that case though, the choice α = a−2 leads to a tight continuous frame, i.e.
the frame operator Aψ is a constant. The situation here is more complicated
in the sense that no choice of measure would yield to a tight frame, a par-
ticularity shared by the continuous wavelet transform on the sphere [Antoine
and Vandergheynst, 1999]. Some choices of measure though lead to simplified
admissibility conditions as we will now discuss.

Theorem 5 Let a �→ α(a) be a positive continuous function on R+
∗ which for

large a behaves like a−β, β > 0. If Da is the conic dilation with parameter
p defined by equations (18), (45) and (47), then an axisymmetric, compactly
supported, continuous function ψ ∈ L2(H2

+, dµ(χ, ϕ)) is admissible for all p >

0 and β >
2

p
+ 1. Moreover, if α(a)da is a homogeneous measure of the form

a−βda, then the following zero-mean condition has to be satisfied :

∫
H2

+

ψ(χ, ϕ)

[
sinh 2pχ

sinh χ

] 1
2

dµ(χ, ϕ) = 0. (70)

Proof : Let us assume ψ(x) belongs to C0(H
2
+), i.e. it is continuous and com-

pactly supported

ψ(x) = 0 if χ > χ̃, χ̃ < const.

We wish to prove that ∫ ∞

0
|〈Eξ,ν|Daψ〉|2 α(a)da < ∞. (71)

First, we compute the Fourier-Helgason coefficients of the dilated function ψ:

〈Eξ,ν|Daψ〉=
∫

H2
+

Daψ(χ, ϕ) Eξ,ν(χ, ϕ) dµ(χ, ϕ)

=
∫ 2π

0

∫ χ̃1/a

0
λ

1
2 (a, χ)ψ(χ 1

a
, ϕ)Eξ,ν(χ, ϕ) sinh χdχdϕ.
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By performing the change of variable χ′ = χ 1
a
, we get χ = χ′

a and d cosh χ =

d cosh χ′
a = λ(a−1, χ′)d cosh χ′. The Fourier-Helgason coefficients become

〈Eξ,ν|Daψ〉 =
∫ 2π

0

∫ χ̃

0
λ

1
2 (a, χ′

a)ψ(χ′, ϕ)Eξ,ν(χ′
a, ϕ)λ(a−1, χ′) sinh χ′dχ′dϕ. (72)

From the cocycle property

λ
1
2 (a−1, χ′) =

1

λ
1
2 (a, χ′

a)
=

[
a

sinh χa

sinh χ

cosh pχ

cosh pχa

] 1
2

, (73)

we get

〈Eξ,ν|Daψ〉 =
∫ 2π

0

∫ χ̃

0
λ

1
2 (a−1, χ′) ψ(χ′, ϕ) Eξ,ν(χ′

a, ϕ) sinh χ′ dχ′dϕ. (74)

Then, we split (71) in three parts:

∫ ∞

0
(.)α(a)da =

∫ σ

0
(.)α(a)da︸ ︷︷ ︸

I1

+
∫ 1

σ

σ
(.)α(a)da︸ ︷︷ ︸

I2

+
∫ ∞

1
σ

(.)α(a)da︸ ︷︷ ︸
I3

. (75)

Let us focus on the first integral. Developing the Fourier-Helgason kernel Eξ,ν

in (74), we obtain :

I1 =
∫ σ

0
α(a) da×

×
∣∣∣∫ χ̃

0

∫ 2π

0
dµ(χ′, ϕ) λ

1
2 (a−1, χ′) ψ(χ′) (cosh χ′

a − sinh χ′
a cos ϕ)−

1
2
+iν

∣∣∣2.
Using the explicit form of χ′

a, we have for various involved quantities the
following asymptotic behaviors at small scale a ≈ 0 :

cosh pχa ∼ 1 + o(a),

cosh χa ∼ 1 + o(a),

sinh χa ∼ a

p
sinh pχ + o(a),

(cosh χ′
a − sinh χ′

a cos ϕ)−
1
2
+iν ∼ 1 − (−1

2
+ iν)

a

p
cos ϕ.

So we have the approximation∫ χ̃

0

∫ 2π

0
dµ(χ′, ϕ) λ

1
2 (a−1, χ′) ψ(χ′) (cosh χ′

a − sinh χ′
a cos ϕ)−

1
2
+iν

∼ a√
2p

∫ χ̃

0

∫ 2π

0
dµ(χ′, ϕ)

[
sinh 2pχ

sinh χ

] 1
2
(

1 − (−1

2
+ iν)

a

p
cos ϕ

)
.
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Integrating over ϕ and using the rotation invariance of ψ, we obtain the fol-
lowing approximation for I1 :

I1 ∼
∫ σ

0
α(a)a2da

∣∣∣∣∫ χ̃

0
sinh χ′dχ′

[
sinh 2pχ′

sinh χ′

] 1
2

ψ(χ′)
∣∣∣∣2. (76)

The second subintegral (I2) is straightforward, since the operator Da is strongly
continuous and thus the integrand is bounded on [σ, 1

σ
].

Consider now the inequality :

I3 ≤
∫ +∞

1
σ

α(a)da×

×
(∫ χ̃

0

∫ 2π

0
dµ(χ′, ϕ) λ

1
2 (a−1, χ′) |ψ(χ′)|| cosh χ′

a − sinh χ′
a cos ϕ|−1/2

)2

.

The term | cosh χ′
a − sinh χ′

a cos ϕ|−1/2 is bounded from above and from below
by :

e−
χ′

a
2 ≤ | cosh χ′

a − sinh χ′
a cos ϕ|−1/2 ≤ e

χ′
a
2 . (77)

Now, we have

e
χ′

a
2 =

(
epχ′

a

) 1
2p =

[√
1 + a2 sinh2 pχ′ + a sinh pχ′

] 1
2p

,

and so we get the asymptotic behavior of this upper bound at large scale:

e
χ′

a
2 ∼ a

1
2p (sinh pχ′)

1
2p .

Again using the explicit form of χ′
a and the following asymptotic behaviors at

large scale a → ∞ :

cosh pχa ∼ a sinh pχ,

sinh χa ∼ a
1
p (sinh pχ)

1
p ,

we reach the following majoration of I3 :

I3 ≤
∫ +∞

1
σ

α(a)a
2
p da

(∫ χ̃

0
dχ′ (sinh χ′)

1
2 (sinh pχ′)

1
p
− 1

2 (cosh pχ′)
1
2 |ψ(χ′)|

)2

.

Since the hyperbolic functions involved in the integration on the χ′ variable
are increasing, we finally end with the estimate :

I3 ≤∼ (sinh χ̃)
1
2 (sinh pχ̃)( 1

p
− 1

2
) (cosh pχ̃)

1
2‖ψ‖2

1

∫ +∞
1
σ

α(a)a
2
p da.
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and so α(a) should behave at least like a−β with β > 2
p

+ 1 for a → ∞.

The convergence of I1 and I3 clearly depends on the choice of measure in the
integral over scales. Restricting ourselves to homogeneous measures α(a) =
a−β and to the range p > 0, one can distinguish the following cases :

• β � 2
p

+ 1: in this case I3 does not converge and there are no admissible
wavelets.

• β > 2
p

+ 1: In this case I1 diverges except when
∫
H2

+
ψ

[
sinh 2pχ
sinhχ

] 1
2 = 0. �

6.3 An example of Hyperbolic Wavelet

Let us present here a class of admissible vectors which satisfy the admissibility
condition. We restrict ourself to the simplest case p = 1

2
. Let us first state a

preliminary result.

Proposition 6 Let ψ ∈ L2(H2
+, dµ). Then∫

H2
+

Daψ(χ, ϕ)dµ(χ, ϕ) = a
∫

H2
+

ψ(χ, ϕ)dµ(χ, ϕ). (78)

Proof: We have to compute the following integral

I =
∫

H2
+

Daψ(χ, ϕ)dµ(χ, ϕ) =
∫

H2
+

λ
1
2 (a, χ)ψ(χ 1

a
, ϕ)dµ(χ, ϕ).

By change of variable χ 1
a

= χ′, we get

I =
∫

H2
+

λ
1
2 (a, χ′

a) ψ(χ′, ϕ) λ(a−1, χ′)dµ(χ′, ϕ)

=
∫

H2
+

λ
1
2 (a−1, χ′)ψ(χ′, ϕ)dµ(χ′, ϕ),

and having λ
1
2 (a−1, χ′) = a, which follows directly from (45), we get

I = a
∫

H2
+

ψ(χ′, ϕ)dµ(χ′, ϕ),

which proves the proposition. �

Using this result, we can build the hyperbolic “difference” wavelet (difference-
of-Gaussian, or DOG wavelet). Given a square-integrable function ψ, we define

fϑ
ψ(χ, ϕ) = ψ(χ, ϕ) − 1

ϑ
Dϑψ(χ, ϕ), ϑ > 1.
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More precisely, using the hyperbolic function ψ = e− sinh2 χ
2 , we dilate it using

the conic projection and obtain

Dϑψ =
1

ϑ
e−

1
ϑ2 sinh2 χ

2 , (79)

we get:

fϑ
ψ(χ, ϕ) = e− sinh2 χ

2 − 1

ϑ2
e−

1
ϑ2 sinh2 χ

2 . (80)

Now, applying a dilation operator on (80) we get

Daf
ϑ =

1

a
e−

1
a2 sinh2 χ

2 − 1

aϑ2
e−

1
a2ϑ2 sinh2 χ

2 . (81)

One particular example of hyperbolic DOG wavelet at ϑ = 2 is:

f 2
ψ(χ, ϕ) =

1

a
e−

1
a2 sinh2 χ

2 − 1

4a
e−

1
4a2 sinh2 χ

2 .

The resulting hyperbolic DOG wavelet at different values of the scale a and
the position (χ, ϕ) on the hyperboloid is shown on Figures 9 , while Figures
10 and 11 show the same wavelet but viewed on the unit disk.

Of course, similar admissible DOG wavelets can be constructed for generic
p > 0.

6.4 An example of Continuous Wavelet Transform on the Hyperboloid

For concluding this section we provide an example of the continuous wavelet
transform applied on a synthetic signal-a hyperbolic triangle. The signal is
projected on the unit disc and the visualization of its CWT at different scale
a is depicted in Figure 12.

7 Euclidean limit

Since the hyperboloid is locally flat, the associated wavelet transform should
match the usual 2-D CWT in the plane at small scales, i. e, for large curvature
radiuses. In this section we recall some basic facts emphasizing those notions.

Let Hρ ≡ L2(H2
+ρ, dµρ) be the Hilbert space of square integrable functions on

a hyperboloid of radius ρ,∫
H2

ρ

|f(χ, ϕ)|2ρ2 sinh χdχdϕ < ∞, (82)

24



Fig. 9. The hyperbolic DOG wavelet fϑ
ψ , for ϑ = 2 at different scales a and positions

(χ,ϕ).

and H = L2(R2, d2�x) be the Hilbert space of square integrable functions on
the plane.

One can easily adapt the Fourier-Helgason transform by updating Eν,ξ(x) for
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Fig. 10. The hyperbolic DOG wavelet fϑ
ψ , for ϑ = 2 at different scales a and positions

(χ,ϕ), viewed on the unit disk in 3-D perspective.

any ρ [Alonso et al., 2002]:

Eρ
ν,ξ(x) =

(
x0 − n̂�x

ρ

)− 1
2
−iνρ

, (83)

for x ∈ H2
+ρ, (x2 = ρ2). The Inönü-Wigner contraction limit of the Lorentz

to the Euclidean group SO(2, 1)+ → ISO(2)+ is the limit at ρ → ∞ for (83)
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Fig. 11. The hyperbolic DOG wavelet fϑ
ψ in the disk, for ϑ = 2 at different scales a

and positions (χ,ϕ).

with x0 ≈ ρ, �x2 � ρ2, i.e
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Fig. 12. Continuous wavelet transform with p = 1
2 of an hyperbolic triangle at

different scales a

lim
ρ→∞ Eρ

ν,ξ(x) = lim
ρ→∞

(
x0 − n̂�x

ρ

)− 1
2
−iνρ

(84)

≈ lim
ρ→∞

(
1 − n̂�x

ρ

)−iνρ

= exp (iνn̂�x). (85)

The Fourier-Helgason transform on the hyperboloid of radius ρ reads :

ψ̂ρ(ν, ξ) =
ρ

2π

∫
�x
ψ(�x)Eν,ξ(�x)

d2�x

x0
(86)

and since x0 ≈ ρ for ρ → ∞, we obtain
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lim
ρ→∞ ψ̂ρ(ν, ξ)=

1

2π

∫
�x
ψ(�x) exp (iνn̂�x)d2�x (87)

= ψ̂(�k), (88)

which is the Fourier transform in the plane.

This relation shows that the geometric and algebraic breakdown SO(2, 1)+ →
ISO(2)+ is mirrored at the functional level. Indeed, condition (65) with α(a) =
a−3 asymptotically converges to its euclidean counterpart. Along the same
line, the necessary condition of the hyperbolic wavelet contracts to the 2-D
euclidean one:

lim
ρ→∞

∫
H2

ψρ(χ, ϕ)dµ(χ, ϕ) →
∫

R2
ψ(�x)d2�x. (89)

A much finer analysis would be necessary to understand if this association
holds at the level of the necessary and sufficient condition (65), but this is out
of the scope of this paper.

8 Conclusions

In this paper we have presented a constructive theory for the continuous
wavelet transform on the hyperboloid H2

+ ∈ R3
+. First we have defined the

affine transformations on the hyperboloid and proposed different schemes for
dilating H2

+. After selecting the dilation of H2
+ through conic projection, we

have introduced the notion of convolution on this manifold. Using the hyper-
bolic convolution we have constructed the continuous wavelet transform and
derived the corresponding admissibility condition. An example of hyperbolic
DOG wavelet has been given. Finally, we have used the Inönü-Wigner con-
traction limit of the Lorentz to the Euclidean group SO0(2, 1)+ → ISO(2)+

to check the consistency of the CWT on the hyperboloid with that one on the
plane.

Interesting directions for future work include the design of a fast convolution
algorithm for an efficient implementation of the transform and discretization
of the theory so as to obtain frames of hyperbolic wavelets.
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