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Abstract 
Visual attention, defined as the ability of a biological or artificial vision system to rapidly detect potentially 
relevant parts of a visual scene, provides a general purpose solution for low level feature detection in a vision 
architecture. Well considered for its universal detection behaviour, the general model of visual attention is 
suited for any environment but inferior to dedicated feature detectors in more specific environments. The goal of 
the development presented in this paper is to remedy this disadvantage by providing an adaptive visual attention 
model that, after its automatic tuning to a given environment during a learning phase, performs similarly well as 
a dedicated feature detector. The paper proposes the structure of an adaptive visual attention model derived 
from the saliency visual attention model. The adaptive model is characterized by parameters that act at several 
feature detection levels. A procedure for automatic tuning the parameters by learning from examples is 
proposed. The experimental examples provided show the feature selection capacity of the generic visual 
attention model. The proposed adaptive visual attention model represents a frame for further developments and 
improvements in adaptive visual attention. 

Keywords: Computer vision, visual attention, adaptive model, low-level vision, feature learning, unsupervised 
learning 

1 Introduction 
Visual attention (VA) is the ability of a vision system, 
be it biological or artificial, to rapidly detect 
potentially relevant parts of a visual scene, on which 
higher level vision tasks, such as object recognition, 
can focus. A model of visual attention that 
encompasses this ability can thus be used as a 
universal feature detector that can be used in a generic 
way in all kind of environments. Well considered for 
its universal detection behaviour, the generic model of 
visual attention is suited for any environment but 
inferior to dedicated feature detectors in more specific 
environments. The goal of the development presented 
in this paper is to remedy this disadvantage by 
providing an adaptive visual attention model that, 
after its automatic tuning to a given environment 
during a learning phase, performs similarly well as a 
dedicated feature detector. 

Numerous computational models of visual attention 
have been suggested during the last two decades. For 
a more complete overview on existing computational 
models of visual attention, the reader is referred to 
[1]. The saliency model of visual attention introduced 
in [2], is now widely used [3], namely in a number of 
computer vision applications, including image 
compression, chromaticity image segmentation, and 
object tracking in dynamic environments [4].   

  

Despite this success, the general model of visual 
attention is not in a position to compete with other 
feature extraction systems that were designed 
specifically for a given environment. 

The idea of making the VA model adaptable was 
already recognized in previous works. For instance in 
[5], the authors consider the possibility to change the 
weights of feature maps by a general leaning 
procedure, that was however limited to the supervised 
learning. Also, model adaptation was investigated for 
the purpose of combining both bottom-up and top-
down control strategies in the visual transformation 
operation. The research led to the development of a 
more sophisticated dual system that provides an 
arbitration mechanism between the two control flows 
[6] [7]. A simpler adaptive visual attention model is 
presented and considered in the present paper, which 
consists of a single parametric VA processing 
structure. Depending on the purpose of use, the model 
adaptation can be performed in a supervised learning 
phase but also in the more difficult case of 
unsupervised learning. 

The presented adaptive VA relies widely on the 
saliency model of VA, which basics is recalled in 
section 2 and which adaptation is treated in section 3. 
Section 4 is devoted to the parameter learning 
procedure in the supervised and also the unsupervised 
learning scenario, including a special consideration 
for robust training. Finally, simple VA experiments 
performed with the generic VA model and presented 
in section 5, show that in presence of video sequences 



of very different nature, the maps provided differ 
enough and justify model adaptation. 

2 Saliency model of VA 
This section describes the classical saliency model of 
visual attention and identifies means of adaptation. 

2.1 Conspicuity and saliency maps 
The saliency model of visual attention transforms 
each image of a video stream into a saliency map, a 
scalar map that accounts for the interest distribution in 
the original image. It is based on three major 
principles: Visual attention acts on a multifeatured 
input; Saliency of locations is influenced by the 
surrounding context; The saliency of locations is 
represented on a scalar saliency map. Several works 
have dealt with the realization of this model i.e. [3].  
In this paper, the saliency map results from 3 cues 
(intensity, chromaticity and orientation) and the cues 
stem from 7 features. Elsewhere [8], additional 
features like depth or motion are also considered. The 
different steps of the model are illustrated in figure 1 
and recalled below. 

First, several features are extracted from the scene by 
computing the so-called feature maps from an RGB 
color image. The features are: (a) Intensity feature F1, 
(b) Chromatic features comprising the two color 
opponency components red-green F2,1 and blue-
yellow F2,2 (c) Local orientation features for the four 
orientations 0°, 45°, 90° and 135°, named respectively 
F3,1 to F3,4. 

In a second step, each feature map is transformed into 
its conspicuity map: the multiscale analysis 
decomposes each feature Fm,j in a set of components 
Fm,j,k for resolution levels k=1...6; the centre-surround 
mechanism produces the multiscale conspicuity maps 
Mm,j,k to be combined, in a competitive way, into a 
single feature conspicuity map Cm,j in accordance 
with: 
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where N(⋅) is a normalization function that simulates 
both intra-map competition and inter-map competition 
among the different scale maps. 

In the third step, using the same competitive map 
integration scheme as above, the features are then 
grouped, according to their nature, into the three cues 
intensity, chromaticity and orientation. Formally, the 
cue conspicuity maps are thus: 
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In the final step of the attention model, the cue 
conspicuity maps are integrated, by using the scheme 
as above, into a saliency map S, defined as: 

∑
=

=
3

1

)(
m

mN CS   (3) 

That is, the scalar map that accounts for the final 
interest distribution over the image. 
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Figure 1: Saliency model of visual attention 

2.2 Map fusion 
The process of map fusion implements two basic 
operations:  
- a normalization of otherwise unscaled information 
channels of arbitrary units 

- a competition scheme that promotes channels of 
higher interest and demotes channels of lesser interest 

The process has been widely studied and several 
methods were proposed which formally represent 
variants for the implementation of the N(C) function 
appearing in equations above [5]. In paper [9], the 
authors show the superiority of a universal 
normalization. This implementation will therefore be 
used here in the experimental part. 

2.3 Spots of attention 
The saliency map S provided by the model of VA is 
often not the final result of the image analysis 
process. Instead, spots of attention are often used for 
further needs. They are defined as the image locations 
of the saliency maxima, formally: 

X={xi | S(xi) is a local maximum} 

Alternatively, rearranging the spots in order of 
decreasing saliency value, we keep usually the set of 
the N most important spots: 

XN= {xi | S(xi) is a local maximum, S(xi)≥ S(xi+1), 
i=1..N} 



3 Adaptive model of visual 
attention 

3.1 Adaptive map fusion 
For providing adaptation in the model, we need a 
mechanism that changes the relative contribution to 
the final saliency map of the various features 
considered. Thus, a feature promotion and demotion 
mechanism is therefore introduced. The basic idea is 
to modify the contribution to the fused map of each 
map contribution N(Cm) by an adaptation weight am, 
where 0 ≤ am ≤ 1 such that the adaptive fusion rule that 
computes the adaptive saliency Sad becomes: 
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3.2 Parametrized model of VA 
Introducing the adaptive map fusion process proposed 
in equation (4) in the visual attention model of figure 
1, we obtain a model parametrized by the weights am. 
Grouping all parameters am in matrix A, the view of 
the new adaptive VA model is the transform of a 
video image into a saliency map controlled by the set 
A={ am } of parameters. 
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Figure 2: Adaptive model of visual attention 

Now, consider that adaptation can be introduced at 
several levels of detail of the feature space, as 
illustrated in figure 2. A simplest adaptation schema 
could consider only the cue level, and adaptation is 
thus restricted to fusion level m, and the set of 
parameters A would therefore include only parameters 
a1, a2 and a3. Introducing adaptation at the fusion level 
j, the feature fusion level would require the 
modification of equation 2 by introduction of 
multiplying parameters am,j,. Finally a full adaptable 
model of visual attention would add adaptation at 
fusion level k, offering also adaptation of the spatial 

level of detail of the features. It requires modification 
of equation 1 by adding weights am,j,k relative to the 
multiscale analysis of the single features. The general 
expression of A is as illustrated in figure 2. 

3.3 Adaptation principle 
Adaptation consists in the modification of the 
parameters A in order for the model to fulfil optimally 
the VA task. In the case considered here where 
adaptation to a given specific visual environment is 
required, a general solution consisting in arbitrary 
parameter modifications and statistical goal 
evaluation is very tedious and not really feasible. 
Therefore, we propose an adaptation principle which 
tends to adjust the weight of each feature in 
proportion of its average contribution to the 
successful detection of the environment spots of 
interest. 

Given Y={yi}, a set of I spots of interest of the 
environment, we compute the mean contribution of 
each conspicuity map to the final saliency as 
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With these contributions, and applying now above 
defined adaptation principle, it results that adaptation 
requires modifying the single weights must tend to the 
mean percentile contribution: 
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4 Model adaptation 
The basic idea consists in teaching the adaptive VA 
system to produce the expected spots of attention. 
Two fundamental different approaches are supervised 
learning and unsupervised learning. 

4.1 Supervised training 
In the supervised training approach, a set Y={y} of 
spots of interest is provided by the supervisor and the 
scene of interest is analysed by the generic VA model, 
providing saliency map S, as well as all intermediate 
conspicuity maps Cm. Applying equation 5 to the 
respective Y and Cm permits to compute the different 
channel contributions bm which are then used to 
modify the adaptation parameters after equation 6, for 
instance with an adaptation rule:  
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where α, 0<α<1, is a coefficient that controls the 
amount of relative modification of the parameters. A 
new step of saliency map computation with the 
modified adaptive VA model together with the 
subsequent modification of A must then be 
performed. This process is finally repeated until a 
stable A is obtained: the learnt adaptive VA model is 
thus available. 

4.2 Unsupervised training 
The unsupervised learning approach is solved 
according to the reinforcement learning paradigm: 
The unbiased system's response is used as a first 
solution which is then improved by reinforcing it. 
Accordingly, the generic VA is used to produce the 
first spots of attention XN. These spots are then used 
like the spots of interest Y in previous approach and 
an iterative procedure is started similar to previous 
description, except that now, the spots of interest Y 
will be updated at each iteration with the new 
computed spots of attention XN. 

4.3 Robust unsupervised training 
The idea is to qualify the spots obtained by the VA 
model and reinforce only the best. For instance, by a 
procedure [4] that, among all spots of attention 
detected in a animated sequence of images, keeps 
only the spots which have longer term existence and 
discards spots which appear only temporarily in few 
frames. 

5 Experiments 
In order to support the ideas explained in this paper, 
we performed a series of exploratory experiments for 
measuring the response of a generic VA model in 
presence of different scenes and illustrating its 
potential of adaptation. 

The analysis refers to three short video sequences of 
250 frames and 10 s duration illustrated in figure 3. A 
generic VA model using a conventional linear and 
long term normalization N(C) scheme [9] was used to 
produce spots of attention from which the 6 first from 
each frame were kept and their conspicuity channel 
contribution evaluated. The related mean contribution 
is reported in table 1. 

 

  
a) football sequence 

   
b) indoor sequence 

  
c) traffic sequence 

Figure 3: Example frames of three video sequences 
and the related 6 spots of attention; the cheese 

diagram indicates the spot percentile contribution to 
saliency of intensity (black), chromaticity (red) and 

orientation (grey) 

The results reveal clear contribution dominance of 
chromaticity in the football sequence, orientation 
dominance in the indoor sequence and a shared 
dominance of orientation and chromaticity in the 
traffic sequence. These results are in close agreement 
to the subjective analysis of the respective scenes, 
with the strong green-red contrasted features of the 
football sequence, the orientation dominated indoor 
sequence, and less obvious dominance of a single cue 
in the traffic sequence. 

Considering the analysis at the next level, i.e. the 
fusion level j, we report the relative contributions of 
the chromaticity channels in table 2 and the 
orientation channels in table 3. For the chromaticity 
channels, the results show the clear dominance of the 
red-green channel (b2,1) in both the football and the 
traffic sequences, whereas in the indoor sequence, the 
two channels are more balanced. 

Table 1: mean contribution bm (bold) and percentile 
contribution to the saliency map 

 
b1

intensity 

b2  
chromaticity 

b3 
orientation

football 2.65 36.17 4.66
 6.1% 83.2% 10.7%
indoor 1.17 2.10 27.72
 3.8% 6.8% 89.5%
traffic 0.72 22.38 20.23
 1.7% 51.6% 46.7%



 

Table 2: mean contribution b2,j (bold) and mean 
percentile contribution to the chromaticity map 

 
b2,1 
(R-G) 

b2,2 
(B-Y) 

football 8.18 0.89
 90.2% 9.8%
indoor 0.69 0.35
 66.0% 34.0%
traffic 4.76 0.48
 90.9% 9.1%

Table 3: mean contribution b3,j (bold) and mean 
percentile contribution to the orientation map 

 
b3,1 
(0°) 

b3,2 
(45°) 

b3,3 
(90°) 

b3,4 
(135°) 

football 0.90 0.62 1.68 0.55
 24.0% 16.6% 44.7% 14.7%
indoor 0.61 0.85 3.62 4.54
 6.3% 8.8% 37.6% 47.2%
traffic 4.63 3.22 1.73 3.82
 34.5% 24.0% 12.9% 28.5%

For the four orientation channels reported in table 3, 
the results are only significant for the two sequences 
dominated by orientation, i.e. the indoor and traffic 
sequences (see table 1). Comparing the two, it appears 
that the first has a strong dominance of horizontal 
(90°) and oblique (135°) orientation while the second 
is characterized by a rather homogeneous distribution 
of the orientations. 

These results clearly illustrate that the VA model not 
only provides saliency maps and spots of attention, 
but provides internal conspicuity maps that can be 
exploited to provide information about the 
contribution and significance of single features. Given 
the important differences of contributing channels in 
the different sequences, it is expected that the 
proposed adaptation tunes the VA procedure for 
enhanced feature detection. 

6 Conclusions 
There is a real interest for an adaptive visual attention 
(VA) model that can be automatically tuned to a given 
environment. This paper proposes a simple, 
parametrized VA model that can be tuned to perform 
specifically for a given environment. The presented 
adaptive VA relies widely on the saliency model of 
VA which adaptation is obtained by weighting of the 
fusion procedure at the cue level, the feature level and 
possibly also at the scale level. Supervised learning 
was considered, but, given the simple learning 
scheme, unsupervised learning is also possible. 
Special consideration is given to a robust training 
scenario. Finally, exploratory VA experiments 
performed with the generic VA model show that in 
presence of video sequences of very different nature, 

the maps provided differ enough and justify model 
adaptation. Therefore, the proposed adaptive visual 
attention model represents a challenging frame for 
further investigations and expected improvements in 
adaptive visual attention.  
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