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Abstract. The computer model of visual attention derives an interest
or saliency map from an input image in a process that encompasses
several data combination steps. While several combination strategies are
possible, not all perform equally well. This paper compares main cue
combination strategies by measuring the performance of the considered
models with respect to human eye movements. Six main combination
methods are compared in experiments involving the viewing of 40 images
by 20 observers. Similarity is evaluated qualitatively by visual tests and
quantitatively by use of a similarity score. The study provides insight
into the map combination mechanisms and proposes in this respect an
overall optimal strategy for a computer saliency model.

1 Introduction

It is generally admitted today that the human vision system makes extensive use
of visual attention in order to select relevant visual information and speed up
the vision process. Visual attention represents also a fundamental mechanism for
computer vision where similar speed up of the processing can be envisaged. Thus,
the paradigm of computational visual attention has been widely investigated
during the last two decades. Today, computational models of visual attention are
available in numerous software and hardware implementations [1, 2] and possible
application fields include color image segmentation [3] and object recognition [4].

First presented in [5], the saliency-based model of visual attention generates,
for each visual cue (color, intensity, orientation, etc), a conspicuity map, i.e.
a map that highlights the scene locations that differ from their surroundings
according to the specific visual cue. Then, the computed maps are integrated
into a unique map, the saliency map which encodes the saliency of each scene
location. Depending on the scene, visual cues may contribute differently to the
final saliency and of course, some scene locations may have higher saliency values
than others. Therefore, the cue combination process should account optimally
for these two aspects.

Note that the map integration process, described here for the purpose of
combining cues, is also available at earlier steps of the computational model,
namely for the integration of multi-scale maps or integration of different fea-
tures. Omnipresent in the model, the competitive map integration process plays



an important role and deserves careful design. The question which of the cue
combination model performs better in comparison to human eye movements
motivated this research.

In [6] four methods are considered for performing the competitive map in-
tegration and the methods were evaluated with respect to the capability to
detect reference locations, but no comparison with eye movements is performed.
Specifically, the authors propose an interesting weighting method as well as a
so-called iterative method performing a non-linear transform of a map. Both will
be considered here. Another feature integration scheme which comprises several
masking mechanisms was also proposed in [7]. In [8], the authors propose an
alternative non-linear integration scheme that shows quite superior to the more
traditional linear scheme and will therefore be considered here.

Another aspect of the cue integration strategy refers to the way each cue
contribution is weighted with respect to the others. The long-term normalization
proposed in [9] will be considered along with the more traditional instantaneous
peak-to-peak normalization approach.

The comparison of saliency maps with human eye fixations for the purpose of
model evaluation has been performed previously. In [10] the authors propose the
notion of chance-adjusted saliency for measuring the similarity of eye fixations
and saliency. This requires the sampling of the saliency map at the points of
fixations. In [11] the authors propose the reconstruction of a human saliency
map or human saliency map from the fixations and perform the comparison
by evaluating the correlation coefficient between fixations and saliency maps.
This method was also used in [7]. The similarity score, used in [8], expresses the
chance-adjusted saliency in a relative way that makes it independent of the map
scale; it will therefore also be used here.

The remainder of this paper is organized as follows. Section 2 gives a brief
description of the saliency-based model of visual attention. Section 3 defines
the tools used for comparing saliency and fixations. Section 4 is devoted to the
selection and definition of the six map integration methods that are evaluated
by experiments described in section 5. Finally, section 6 concludes the paper.

2 The saliency-based model of visual attention

The saliency-based model of visual attention was proposed by Koch and Ullman
in [5]. It is based on three major principles: visual attention acts on a multi-
featured input; saliency of locations is influenced by the surrounding context;
the saliency of locations is represented on a scalar saliency map. Several works
have dealt with the realization of this model i.e. [1]. In this paper, the saliency
map results from 3 cues (intensity, contrast, orientation and chromaticity) and
the cues stem from 7 features. The different steps of the model are detailed
below.

First, 7 features (1..j..7) are extracted from the scene by computing the so-
called feature maps from an RGB color image. The features are: (a) Intensity



feature F1, (b) Four local orientation features F2..5 and (c) Two chromatic fea-
tures based on the two color opponency filters red-green F6 and blue-yellow F7.

In a second step, each feature map is transformed into its conspicuity map:
the multiscale analysis decomposes each feature Fj in a set of components Fj,k for
resolution levels k=1...6; the center-surround mechanism produces the multiscale
conspicuity maps Mj,k to be combined, in a competitive way, into a single
feature conspicuity map Cj in accordance with:

Cj =
K∑

k=1

N (Mj,k) (1)

where N (.) is a normalization function that simulates both intra-map competi-
tion and inter-map competition among the different scale maps.

In the third step, using the same competitive map integration scheme as
above, the seven (j=1...7) features are then grouped, according to their nature,
into the three cues intensity, color and orientation. Formally, the cue conspicu-
ity maps are thus:

Cint = C1; Corient =
∑

jε{2,3,4,5}
N (Cj); Cchrom =

∑

jε{6,7}
N (Cj) (2)

In the final step of the attention model, the cue conspicuity maps are inte-
grated, by using the scheme as above, into a saliency map S, defined as:

S =
∑

cueε{int,orient,chrom}
N (Ccue) (3)

3 Comparing fixations and a saliency map

The idea is to design a computer model which is close to human visual attention
and, here, our basic assumption is that human visual attention is tightly linked to
eye movements. Thus, eye movement recording is a suitable means for studying
the spatial deployment of human visual attention. More specifically, while the
observer watches at the given image, the K successive fixation locations of his
eyes

Xi = (xi
1,x

i
2,x

i
3, ...) (4)

are recorded and then compared to the computer generated saliency map.
The degree of similarity of a set of successive fixations with the saliency map

is evaluated qualitatively and quantitatively. For the qualitative comparison, the
fixations are transformed in a so-called human saliency map which resembles the
saliency map and the similarity is evaluated by comparing them visually. For the
quantitative comparison, a similarity score is used.



3.1 Human saliency map

The human saliency map H(x) is computed under the assumption that it is an
integral of gaussian point spread functions h(xk) located at the position of the
successive fixations. It is assumed that each fixation xk gives rise to a gaussian
distributed activity. The width of the gaussian is chosen to approximate the size
of the fovea. Formally, the human saliency map H(x) is:

Shuman = H(x) =
1
K

K∑

k=1

h(xk) (5)

3.2 Score

In order to compare a computational saliency map and human fixation patterns
quantitatively, we compute a score s, similar to the chance-adjusted saliency
used in [10]. The idea is to define the score as the difference of average saliency
sfix obtained when sampling the saliency map S at the fixations points with
respect to the average s obtained by a random sampling of S. In addition, the
score used here is normalized and thus independent of the scale of the saliency
map, as argued in [8, 12]. Formally, the score s is thus defined as:

s =
sfix − s

s
, with sfix =

1
K

K∑

k=1

S(xk) (6)

4 Six cue integration methods

Transforming initial features into a final saliency map, the model of visual atten-
tion includes several map integration steps described by eq. 1, 2 and 3 in which,
the function N (.) formally determines the competitive map integration. Two
different normalizations, a weighting scheme and three different map transforms
will now be defined and used for describing six different cue integration methods
M1...6 to be compared.

4.1 Peak-to-peak vs. long-term normalization

When the integration concerns maps issued from similar features, their value
range is similar and the maps can be combined directly. This is the case for
integration of multiscale maps (eq. 2) and also for the integration of similar
features into the cue maps (eq. 3). However, the case of the integration of several
cues into the saliency map (eq. 4) is different because the channels intensity,
chrominance and orientation have different nature and may exhibit completely
different value ranges. Here a map normalization step is mandatory.

Most of the previous works dealing with saliency-based visual attention [1]
normalize therefore the channels to be integrated using a peak-to-peak nor-
malization, as follows:



NPP (C) =
C − Cmin

Cmax − Cmin
(7)

where Cmax and Cmin are respectively the maximum and the minimum values of
the conspicuity map C. This peak-to-peak normalization has however an unde-
sirable drawback. It maps each channel to its full range, regardless of the effective
amplitude of the map. An alternative normalization procedure proposed in [9]
tends to escape it.

The idea is to normalize each channel with respect to a maximum value
which has universal meaning. The procedure, named long-term normaliza-
tion, scales the cue map with respect to a universal or long-term cue specific
maximum M cue by

NLT (C) =
C

M cue

(8)

Practically, the long-term cue maximum can be estimated for instance by
learning from a large set of images. The current procedure computes it from
the cue maps Ccue(n) of a large set of more than 500 images of various types
(lanscapes, traffic, fractals, art, ...) by setting it equal to the average of the cue
map maxima.

4.2 Weighting scheme

Inter-map competition can be implemented by a map weighting scheme. The
basic idea is to assign to each map C a scalar weight w that holds for its individ-
ual contribution. Most of the previous works dealing with saliency-based visual
attention use such a competition-based scheme for map combination based on
a weight. The weight is computed from the conspicuity map itself and tends to
catch the global interest of that map. We consider following weight definitions:

w1(C) = (M −m)2 or w2(C) =
Cmax

C
(9)

The first weight expression w1 stems from [1]. In it, M is the maximum
value of the normalized conspicuity map Npp(C) and m is the mean value of
its local maxima. This weight function w1 tends to promote maps with few
dissimilar peaks and to demote maps with a lot of same peaks. The second weight
expression w2, proposed in [8], derives also the weight from the conspicuity map
C. The values Cmax and C are respectively the maximum and mean values of
the conspicuity map. This weight tends to promote maps with few large peaks
and demote maps with a lot of similar peaks.

4.3 Map transform

The first map transform adopts a linear mapping and a weighting scheme for
inter-map competition. The corresponding mapping is:

Nlin(C) = w(C) · C (10)



where w(C) is any of the weights above.
The second map transform corresponds to the iterative scheme proposed in

[6]. Here, the function N (.) consists in an iterative filtering of the conspicuity
map by a difference-of-Gaussians-filter (DoG) according to:

Niter(C) = Cn with Cn = |Cn−1 + Cn−1 ∗DoG− ε|≥0 (11)

where the filtering, initiated by C0 = C, iterates n times and produces the
iterative mappingNiter(C). The iterative mapping tends to decrease lower values
and increases higher values of the map.

The third map transform, proposed in [8], consists in an exponential mapping
of the conspicuities and a weighting scheme for inter-map competition, defined
as:

Nexp(C) = w(Cγ) · Cγ with Cγ = (Cmax − Cmin)(
C − Cmin

Cmax − Cmin
)γ (12)

the mapping has exponential character imposed by γ > 1: it promotes the
higher conspicuity values and demotes the lower values; it therefore tends to
suppress the lesser important values forming the background.

4.4 Comparison of six methods

The considered methods combine the 3 map transforms (Nlin Niter and Nexp)
with one of the two normalization schemes (NPP and NLT ), resulting in six cue
integration methods M:

M1 : Nlin/PP (C) = Nlin(NPP (C)) M4 : Nlin/LT (C) = Nlin(NLT (C))
M2 : Niter/PP (C) = Niter(NPP (C)) M5 : Niter/LT (C) = Niter(NLT (C))
M3 : Nexp/PP (C) = Nexp(NPP (C)) M6 : Nexp/LT (C) = Nexp(NLT (C))

In [8], the performance of the weighting schemes w1 and w2 were similar. Here
only the weight w2 defined eq. 9 is used.

5 Comparison Results

5.1 Experiments

The experimental image data set consists in 40 color images of various types like
natural scenes, fractals, and abstract art images. The images were shown to 20
human subjects. Eye movements were recorded with a infrared video-based track-
ing system (EyeLinkTM, SensoMotoric Instruments GmbH, Teltow/Berlin). The
images were presented, in a dimly lit room on a 19′′ CRT display with a resolu-
tion of 800× 600, 24 bit color depth, and a refresh rate of 85 Hz. Image viewing
was embedded in a recognition task. The images were presented to the subjects
in blocks of 10, for a duration of 5 seconds per image, resulting in an average of
290 fixations per image.
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Fig. 1. Peak-to-peak NPP versus long-term NLT normalization scheme: (1) M1 com-
pared to M4, (2) M3 to M6.

5.2 Qualitative Results

Figure 1 provides a qualitative comparison of the peak-to-peak (NPP ) and the
long-term (NLT ) normalization schemes. Two examples are given. The first one
(1) comparesM1 andM4 methods for image #28 (flower). More specifically, the
images provide a comparison of the saliency maps (D) obtained fromM1 andM4

with the human saliency map (E). We notice that M4 is more suitable than M1.
An explanation is given by analyzing the cue contributions: color contribution
(A), intensity contribution (B) and orientation contribution (C). We notice that
with M1, which applies the peak-to-peak normalization, all cues contribute in
a similar way to saliency, although the intensity contrast clearly dominates in
the image. The performance is poor. M4 however, which applies the long-term
normalization, has the advantage to take into account the relative contribution of
the cues. Thus, color and orientation are suppressed while intensity is promoted.
To summarize, this example illustrates the higher suitability of the long-term
normalization NLT , compared to the peak-to-peak NPP . Example (2) compares
M3 with M6 for image #37 (blue traffic sign). It also illustrates the higher
suitability of the NLT compared to the NPP .

In Figure 2, we discuss the performances of the linear (Nlin), iterative (Niter)
and exponential (Nexp) map transforms by comparing the saliency map issued
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Fig. 2. A comparison of the map transforms Nlin, Niter and Nexp, by comparing the
saliency map issued from methods M1, M2 and M3 with the human saliency map.

from methods M1, M2 and M3. Here, the results illustrate the highest suitabil-
ity of the iterative Niter and exponential Nexp methods, compared to the linear
model Nlin. Hence, Niter and Nexp are non-linear map transform, which tend to
promote the higher conspicuity values and demotes the lower values. It therefore
tends to suppress the low-level values formed by the background.

5.3 Quantitative Results

Table 1 shows the average scores for the six methods, computed over all the
images and issued from the five first fixations over all subjects. The results with
a different number of fixation are similar. Concerning the Niter and Nexp, the
evaluation is performed by testing different number of iterations (3, 5 and 10)
and γ value (1.5, 2.0, 2.5, 3.0).The quantitative results presented here confirm
the qualitative results. First, the long-term normalization (NLT ) provides higher
scores than the peak-to-peak (NPP ) over all map transforms (Nlin, Niter and
Nexp). Second, both non-linear map transforms (Niter andNexp) perform equally
well and provide higher scores than the linear Nlin.

Table 2 reports the t and p-value obtained with a paired t-test in order to
verify that the NLT scores are statistically higher than the NPP scores over all



normalization methods NPP NLT

Nlin M1: 0.49 M4: 0.65

n=3 1.49 1.88
Niter n=5 M2: 1.92 M5: 2.40

n=10 2.36 2.94

γ=1.5 0.84 1.22
Nexp γ=2.0 1.46 2.33

γ=2.5 M3: 2.06 M6: 3.39
γ=3.0 2.55 4.24

Table 1. An overview of the average scores for the six methods.

NPP vs NLT Nlin vs Niter vs Nexp

Paired t-test M1 vs M4 M2 vs M5 M3 vs M6 M4 vs M5 M4 vs M6 M5 vs M6

t-value 3.09 2.92 2.46 4.52 3.37 0.25

p-value < 0.005 < 0.01 < 0.025 < 0.005 < 0.005 -

Table 2. t-value and p-value obtained with a paired t-test for comparing the different
normalization schemes.

the images, and also Niter and Nexp scores higher than Nlin scores. Here, the
presented values are computed for Nexp(γ = 2.0) and for Niter(n = 5) iteration,
the p-values confirm both statements above.

Finally, this study suggests that an optimal combination strategy for saliency
computation uses long-term normalization (NLT ) combined with one of the non-
linear transforms (Niter, Nexp). If computation costs are to be considered as
additional criteria of selection for a non-linear map transform, the less complex
exponential Nexp would probably be preferred.

6 Conclusions

This paper presents main cue combination strategies in the design of computer
model of visual attention and analyzes the performance in comparison to human
eye movements. Two normalization schemes (peak-to-peak NPP and long-term
NLT ) and three map transforms (linear Nlin, iterative Niter and exponential
Nexp) are considered, resulting in six cue integration methods. The experiments
conducted for evaluating the methods involve the viewing of 40 images by 20
human subjects.

The qualitative and quantitative results conclude two principal points: first,
the long-term normalization scheme NLT is more appropriate than the peak-
to-peak NPP . The main difference between both schemes is that NLT has the
advantage to take into account the relative contribution of the cues which is not



the case of NPP . Second point, both non-linear map transforms Niter and Nexp

perform equally well and are more suitable than the linear Nlin.
From this study, we can state that the optimal cue combination scheme for

computing a saliency close to a collective human visual attention is the long-term
NLT normalization scheme combined with one of the non-linear map transforms
Niter or Nexp, with a possible preference for the later method for its lesser
computation costs.
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