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ABSTRACT

Recent time-of-flight (TOF) cameras allow for real-time acquisition of range maps with good performance.
However, the accuracy of the measured range map may be limited by secondary light reflections. Specifically,
the range measurement is affected by scattering, which consists in parasitic signals caused by multiple reflections
inside the camera device. Scattering, which is particularly strong in scenes with large aspect ratios, must
be detected and the errors compensated. This paper considers reducing scattering errors by means of image
processing methods applied to the output image from the time-of-flight camera. It shows that scattering reduction
can be expressed as a deconvolution problem on a complex, two-dimensional signal. The paper investigated several
solutions. First, a comparison of image domain and Fourier domain processing for scattering compensation
is provided. One key element in the comparison is the computation load and the requirement to perform
scattering compensation in real-time. Then, the paper discusses strategies for improved scattering reduction.
More specifically, it treats the problem of optimizing the description of the inverse filter for best scattering
compensation results. Finally, the validity of the proposed scattering reduction method is verified on various
examples of indoor scenes.
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1. INTRODUCTION

Recent time-of-flight (TOF) cameras allow for real-time acquisition of range maps with good performance. For
instance, the Swissranger SR-3000 camera has a 176×144 pixels sensor, and supports continuous operation at 20
Hz.1 The depth resolution can be better than 1 cm in favourable conditions, i.e. with no bright light sources in
the field of view.2 However, depth measurement is degraded by scattering, which consists in secondary reflections
occurring between the lens and the imager3,4,.5The degradation is particularly strong when the weak signal from
far objects (background) is affected by the strong scattering signal from foreground objects. This degradation of
the depth image is a significant penalty in many applications, especially when background subtraction methods
are employed.3 For this reason, scattering must be suppressed, or at least reduced.

In [5], scattering reduction was expressed as a deconvolution problem on a complex, two-dimensional signal. The
proposed algorithm for scattering reduction uses inverse filters implemented by a sum of separable gaussians. In
this paper, we will discuss two improvements to this approach. The first improvement is the usage of Fourier
domain processing for convolution operations. Processing in Fourier domain brings the advantage that the
computation time per frame is significantly shorter than for spatial filtering. The second contribution concerns
the degradation modeling. Given that an accurate measurement of the PSF is not possible, the paper considers
various possible descriptions for the scattering. Finally, parametric models where the scattering degradation is
expressed as a sum of gaussian filters are used. A method for parameter estimation is described that opens to
the automatic determination of a camera specific scattering compensation model.

The remainder of this paper is organized as follows. A brief reminder of time-of-flight imaging principles is
presented in section 2. Section 3 discusses image domain versus Fourier domain processing. The different
descriptions for usable scattering models are discussed in section 4. Finally, section 5 presents real-world results
illustrating the performance of scattering compensation.



2. TIME-OF-FLIGHT IMAGING AND SCATTERING
State-of-the-art TOF cameras6,7,8are based on the continuous emission of a periodic signal. The frequency of
modulation f of this signal is typically 20MHz. As the periodic signal received at each pixel (i, j) of the camera
sensor is described by its amplitude A(i, j) and its phase ϕ(i, j), it can be expressed as a complex signal S(i, j).
The range r is directly proportional to the phase. With c as the speed of light, we have :

S(i, j) = A(i, j) · eϕ(i,j) r(i, j) =
c

4π f
· ϕ(i, j) (1)

Figure 1 shows an example of range image acquisition for a scene of an office room (1(a)). The TOF range data
was acquired with a SR-3100 camera, and is represented in fig. 1(b) as a color coded image, between 0 and 7.5m

(a) Background : color image (b) Background : range image (c) Foreground : range image

Figure 1. TOF range images and scattering effects

To illustrate scattering, figure 1(c) shows the results of the depth measurement when a foreground object (in
this case a person) is introduced in the field of view. Comparison of fig. 1(b) and 1(c) allows to identify changes
in the background, which we will refer to as scattering artifacts.

The main mechanism behind scattering artifacts is a parasitic optical coupling between distinct pixels1 . This
coupling is caused by unwanted reflections on the camera sensor and optics, as illustrated schematically in fig.2.
Based on this simple picture, a mathematical model for scattering was defined in [5]. This model is briefly
summarized below. S(i, j) is defined as the ideal signal entering the camera device and Smeas(i, j) as the output
signal delivered by the camera. The first assumption in the scattering model is that scattering can be described
as an additive perturbation on the original signal, so that we have :

Smeas(i, j) = S(i, j) + Sscat(i, j) (2)

where Sscat(i, j) is the scattering signal due to parasitic reflections. The second assumption in the model is that
scattering effects are linear, and similar for each position on the sensor, so that the scattering signal Sscat(i, j)
can be expressed as the result of the convolution of the ideal signal with a scattering PSF ∆h(i, j), i.e.

Sscat(i, j) = S(i, j) ∗ ∗∆h(i, j) (3)

If we define h0 as the neutral element with respect to convolution, we can express equation 2 with a convolution
operation :

Smeas(i, j) = S(i, j) ∗ ∗(h0(i, j) + ∆h(i, j)) = S(i, j) ∗ ∗h(i, j) (4)

where h = h0 + ∆h is interpreted as a camera point spread function including scattering coupling.

In the following sections, we will see how this model for scattering can be used to implement scattering com-
pensation, and how the knowledge of ∆h(i, j) is sufficient to implement a scattering compensation algorithm
coherent with this model.



Figure 2. Light scattering in TOF camera .

3. SCATTERING COMPENSATION

The goal of scattering compensation is to remove artifacts caused by scattering in the depth images. Thus,
scattering compensation can be interpreted as recovering the ideal signal S for each corresponding camera
measurement Smeas.

3.1. Deconvolution problem
Scattering compensation is indeed a deconvolution problem, since the signal S and Smeas are related by a
convolution operation ( Smeas = S ∗ ∗h), and that the final goal is to reconstruct S from the measurement
Smeas. In the following, we consider and compare two possible implementations of a deconvolution algorithm
realized through standard image processing techniques. In the first implementation, the deconvolution is realized
as a spatial convolution with an inverse filter I, whereas in the second approach, the deconvolution is performed
through a division in the Fourier space.

3.2. Image domain filtering
In the image domain filtering approach,5 the data processing for scattering compensation is realized by applying
an ad-hoc filter I on the measured image Smeas. The result of the filtering operation is considered as the
scattering free image data:

S = Smeas ∗ ∗I (5)

Using again h0, the neutral element with respect to convolution, we can define the scattering correction response
∆I so that Sscat = S ∗ ∗∆I. As stated in 5, the knowledge of ∆h or ∆I is equivalent, since those two filters are
linked through the Fourier transform :

I = h0 −∆I = F−1 {1/F {h0 + ∆h}} (6)

Image domain filtering is straightforward to implement, and can be advantageous when the filter employed is
small (less than 10 pixels). However, the experience shows that, for scattering compensation, the filters used
must be large (even larger that the image). The inverse filter method is then computation intensive. It should
be used only in special cases of small filters , or when using separable filters (as in reference 5).



3.3. Fourier domain filtering
The relation : Smeas = S ∗ ∗h can be easily transposed in Fourier domain : S̃meas = S̃ · h̃, where the tilde
sign indicates the Fourier transform (S̃ = F {S}). In Fourier domain, the convolution was replaced by a
multiplication. Therefore, the Fourier transform of the unknown, scattering-free signal can be expressed as :

S̃ = S̃meas/h̃ = S̃meas · Ĩ (7)

from which S is recovered by the inverse Fourier transform of S̃.

Those considerations show that scattering compensation in Fourier domain is possible, and that the computation
cost per 3D frame corresponds to two Discrete Fourier Transforms (DFT), and a division of two complex images.

4. SCATTERING MODELS

The scattering model presented above implies that scattering can be described as a convolution operation with a
PSF that models the real-world camera response. However, the PSF ∆h is not known a-priori. In the following
section, we present several variant scattering descriptors and discuss their use for scattering compensation.

4.1. Scattering descriptors
4.1.1. PSF from real-world measurement

Ideally, the construction of a scattering model should be based on a real-world measurement of the scattering
PSF ∆h(i, j) However, this approach is not practical, for two main reasons :

• a real-world scene where exactly one pixel of the camera sensor is in the foreground is practically impossible
to set up.

• the values of the PSF are very small and their measurement is subject to noise.

Those two elements push toward a scattering description where the PSF can be described as an analytical
function depending on few parameters.

4.1.2. PSF as sum of gaussians

Using gaussians as building blocks allows to ensure that the scattering PSF ∆h(i, j) decreases when the separation
between the anchor point and pixel (i, j) is large. Using anisotropic gaussian kernels allows to model the
asymmetry observed between sensor rows and sensor columns. But the main advantage of the sum of gaussians
approach is that only a small number of parameters require to be optimized. If the number of gaussians is set
to G, the number of free parameters is equal to 3 · G. Explicitly, for each gaussian, the width of the gaussian,
both in the horizontal and the vertical direction need to be determined, along with a scalar amplitude factor.
The PSF ∆h is then defined as

∆h(i, j) =
G∑

k=1

g(k) =
G∑

k=1

w(k) · hh(i, k) · hv(j, k) (8)

where :

• hh is a 1D horizontal gaussian kernel(∈ R): hh(i, k) = 1√
2πσh(k)

e
− i2

2σ2
h
(k)

• hv is a 1D vertical gaussian kernel (∈ R): hv(j, k) = 1√
2πσv(k)

e
− j2

2σ2
v(k)

• w(k) is a scalar (∈ R) weight.

• G is the count of gaussian kernels used in the model.

For commodity of notation, we will designate by Θ the set of 3 · G parameters that specify a given PSF model.



4.1.3. Inverse filter

For scattering compensation by image domain filtering, a description of the inverse filter ∆I is required. When
a model for the scattering PSF ∆h is known, the inverse filter can be determined from relation 6. In the general
case, the inverse filter is a discrete function ∆I(i, j), which can not be separated for faster computation.

4.1.4. Inverse filter expressed as sum of gaussians

Using a description of the inverse filter ∆I as a sum of gaussian kernels (∆I =
∑

g) allows to significantly reduce
the computation cost for scattering compensation through image domain filtering.5

4.2. Computation load for scattering compensation

Table 1 shows a comparison of the computational complexity for approaches of deconvolution (image domain or
Fourier domain filtering), and for different scattering descriptors. The image space filtering approach is practical
only if the inverse filter is expressed as a sum of separable gaussians. Nevertheless, the complexity is higher than
in Fourier transform processing. Finally, the Fourier domain filtering is preferred since it involves the lowest
complexity of computation, independently of the scattering descriptor used.

Among the descriptors, the PSF expressed as sum of gaussians (∆h =
∑

g) is preferred since it directly describes
the phenomenological scattering model of fig. 2, and since it is specified by a small set of parameters Θ that
may be easily optimized.

Table 1. Comparison of deconvolution complexity for different scattering models
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Image domain filtering Fourier domain filtering

• ∆h(i, j)

• ∆h =
∑

g

• ∆I(i, j)

Complexity O
(
M2N2

)

• ∆I =
∑

g Complexity O (MN(M + N)).

Complexity O (MN(log(MN))).

4.3. Method for model estimation

The experimental setup for measuring the model consists in the recording of two range images, the first from an
arbitrary scene named background, the second from the same scene with an additional object close to the camera
named foreground. The basic idea for estimating the parameters Θ of the PSF ∆h(Θ) that best describes the
real camera consists in varying ∆h(Θ) until a best match is found between the scattering compensation of the
foreground image and the background image.

4.3.1. Experimental setup

A schematic description of the measurement setup is given in fig. 3. This metric requires a set of two TOF
measurements of the same background scene. In the first measurement (fig. 3(a)), the range image for the
background scene rbg is recorded. In the second measurement (fig. 3(b)) a close object causing strong scattering
is introduced in the field of view, and the foreground image rmeas is recorded. The scattering compensation
algorithm can then be applied to the foreground image (fig. 3(d)), producing the compensated image rcomp.

Quantitative comparison is performed on the images excluding scatterer∗(fig. 3(c)). The depth error is defined



(a) (b)

(c) (d)

Figure 3. Experiment setup for scattering quantification. (a) : Background measurement rbg- (b) : Measurement
with foreground object rmeas - (c) : Background only image for foreground scene rmeas,masked - (d) : Output with
scattering compensation rcomp

as the average :
E(r) =

∑
(i,j)∈background

|r (i, j) − rbg (i, j)| /
∑

(i,j)∈background

1 (9)

This quantity can be interpreted as the average displacement for backgrounds pixel in the range image r.

4.3.2. Parameter estimation by human expert

A straightforward method for improvement of scattering compensation results is the estimation of parameters Θ
through trial and error by a human expert. Proceeding by trial and error, it is possible to quickly determine a
set of parameters which allow for a large reduction in scattering artifacts.

4.3.3. Strategy for model improvement

The quality of the parameters Θ used can be quantified by monitoring the error E (rcomp) as Θ is varied. The
set of parameters used is optimal if the error after compensation E (rcomp) is minimized.

5. EXPERIMENTS

In this section, we apply the proposed scattering compensation methods to a series of range images and compare
performances in terms of computational cost and residual compensation error.

5.1. Processing speed

Table 2 compares the processing time for 4 different scattering compensation implementations, running on the
same computer, and producing identical results:

• Image domain filtering with discrete function ∆I(i, j)

• Image domain filtering with inverse filter expressed as a sum of separable gaussians (∆I =
∑

g)

• Image domain filtering with inverse filter ∆I expressed as a sum of separable gaussians, realized with
optimized image processing library (IPL 2.5)9

• Fourier domain filtering with PSF ∆h



Table 2. Average processing time for different scattering descriptors.

Image domain filtering Fourier domain fil-
tering

Discrete func-
tion ∆I(i, j)

Sum of gaussians
∆I =

∑
g

Optimized sum of
gaussian ∆I =

∑
g

∆h =
∑

g

Complexity O
(
M2N2

)
O (MN(M + N)) O (MN(M + N)) O (MNlog(MN))

Average proc.
time per frame

46.0 s 0.460 s 0.085 s 0.033 s

The comparison clearly verifies that Fourier domain processing allows for faster scattering compensation. More-
over, it should be remembered that Fourier domain processing is the only usable method where the PSF ∆h can
be directly parametrized as a sum of gaussians.

5.2. Compensation performance
5.2.1. Parameter determination by trial and error for gaussian weights

The influence of the PSF parameters Θ used on the different errors is expressed only as a result from convolution
operations. Therefore, no simple functional relation between the set of parameters Θ and the error E (rcomp)
is not available. As a consequence, empirical optimization through trial and error is preferred, although it does
not provide a guarantee concerning the optimality of a given set of parameters Θ. Seeking optimality would
require to perform an exhaustive search of the parameter space. Unfortunately, exhaustive search is too long to
be practical, even for simple parametric model for the PSF. A further simplification is therefore required.
Using a small sum of gaussians to model the PSF (one to three gaussians), and a fixed width for each gaussian
(the widths are fixed by a human expert, who takes into account the requirement to compensate scattering on
different spatial scales) allows to coarsely span the parameter space of the scalar weights associated with each
gaussian kernel in a reasonable amount of time. During this search, the error E (rcomp) is monitored.

The set of parameters used in fig. 4 was obtained after a coarse search of the best compensation results for
a model with three gaussians, of fixed geometry (see table 3). As described in section 4.3.3, only the weights

Table 3. Width for the individual gaussians used in optimization experiment.
g σh σv

1 32 64
2 48 48
3 64 64

associated with each gaussian were modified during the search. The particular search that lead to the choice of
model of table 4 involved 343 different weight combinations (7 weights for each gaussian).

5.2.2. Measurement of scattering residuals for SR-3100 camera

Figure 4 shows the result of an experiment of scattering compensation for a scattering model where the PSF h is
expressed as a sum of two gaussians. Again, this example was taken taken according to the protocol defined in
section 4.3.1 : rbg is the background range image, rmeas is the measured foreground range image, and rcomp is
the foreground range image after scattering compensation. For each range image (4(c),(e)), a masked difference
image is also provided to highlight depth artifacts (4(d),(f)). Although the result after compensation is not yet
ideal, it does nevertheless show a significant improvement over the raw measurement. As mentioned above, this
improvement is important for applications where the background of the range scene must be monitored. This
result was obtained with a PSF ∆h defined as the sum of two gaussians (see table 4). In the example presented
above, using the compensation algorithm allowed to reduce scattering by an amount corresponding to more that
75% of its original value.

∗an ad-hoc segmentation scheme on rmeas is used to identify scatterer pixels



E (rbg) = 0mm

(a) rbg (b) PSF ∆h

E (rmeas) = 747mm

(c) rmeas (d) rmeas − rbg, masked

E (rcomp) = 172mm

(e) rcomp (f) rcomp − rbg, masked

Figure 4. Scattering compensation experiment; the background scene is an office room, the foreground object a person
walking in the room.

Table 4. PSF model used for SR-3100 camera.
g σh σv w
1 32 64 +0.1333
2 48 48 +0.2800



5.3. Qualitative comparison of depth images

Figure 5 shows a small collection of range images illustrating scattering compensation results. Range is rep-
resented by a color code, from red (close to the camera) to blue (far from the camera). Those examples were
taken according to the protocol defined in section 4.3.1.rbg is the background range image, rmeas is the mea-
sured foreground range image, and rcomp is the foreground range image after scattering compensation. In all

Setup rbg rmeas rcomp

Figure 5. Scattering compensation experiments. rbg is the background range image, rmeas is the measured foreground
range image, and rcomp is the foreground range image after scattering compensation.

situations shown, scattering artifacts are very strong : they are easily recognizable on a color map showing depth
difference for several meters. In those situations, the result with scattering compensation is not perfect : some
range values for background pixels are still highly different in the image with the object, when compared with
the background image. Unfortunately, scattering compensaton performance is strongly dependent on the scene
imaged. Nevertheless, tests performed so far have shown that scattering compensation always brings a significant
improvement: between 38% in adverse situations up to 95% in favorable situations.

6. CONCLUSION

The paper is a contribution to the reduction of scattering in TOF cameras. First, a simple physical model for
scattering was used and scattering compensation algorithms were investigated. Two algorithms implementations



were compared, and it was shown that scattering compensation performed in Fourier domain offers the best
performance, in processing time, but also in commodity of usage relative to the specific scattering description
used in the model. We observed that the most useful description of scattering is the PSF ∆h, since it provides
a description which is close to the phenomenon occurring inside the camera device.

Then, given that a direct PSF measurement cannot be performed because of noise, a parametric description
for the PSF was introduced, in the form of a sum of gaussians. The PSF is estimated by trial and error. An
error metric allowing to compare results from different scattering models was defined, and a semi-automated
parameter determination process was presented.

Then also the effectiveness of the proposed scattering reduction algorithm was tested on many different scenes.
The improvement varied between 38% in adverse situations up to 95% in favorable situations. The computation
cost is in the order of 30ms, which is sufficiently low for many high frame rate applications.

Finally, we believe that for improved scattering compensation, more advanced models of the scattering phe-
nomenon should be used. Experiments suggest that the hypothesis of a space invariant PSF for scattering is not
fully verified. Advanced scattering compensation algorithms could involve models with different PSFs depending
on the position of the scatterer object in the field of view, or on its distance to the camera.
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