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In this paper we present a computational model of dynamic visual attention on the
sphere which combines static (intensity,chromaticity, orientation) and motion features in
order to detect salient locations in omnidirectional image sequences while working directly
in spherical coordinates. We build the motion pyramid on the sphere by applying block
matching and varying the block size. The spherical motion conspicuity map is obtained
by fusing together the spherical motion magnitude and phase conspicuities. Furthermore,
we combine this map with the static spherical saliency map in order to obtain the dynamic
saliency map on the sphere. Detection of the spots of attention based on the dynamic
saliency map on the sphere is applied on a sequence of real spherical images. The effect
of using only the spherical motion magnitude or phase for defining the spots of attention
on the sphere is examined as well. Finally, we test the spherical versus Euclidean spots
detection on the omnidirectional image sequence.

1. INTRODUCTION

Visual attention (VA) is the ability of the human visual system (HVS) to rapidly select
the most salient objects in a given scene. VA represents also a fundamental mechanism for
computer vision where similar speed up of the processing can be envisaged. The motion is
clearly involved in visual attention, where rapid detection of moving objects is essential for
adequate interaction with the environment [1]. Over the last decade, several investigations
focused on the architecture of the computer model of dynamic visual attention. In order
to deal with image sequences, the current dynamic models generally integrate additional
motion components to the classical saliency-based model proposed in [2]. A dynamic
model that combines the static features (intensity, color, orientation) and dynamic features
(temporal changes) for four orientations (00, 450, 900, 1350) is considered in [3]. There a
comparison with the human vision is performed experimentally, by comparing the models
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with respect to the eye movement patterns of human subjects. Combining in different ways
color, intensity, orientation and motion magnitude is examined in [4] and an evaluation
is performed on single synthetic sequences. Another dynamic model based on motion
contrast that is computed as the difference between local (hierarchical block-matching)
and dominant motion is proposed in [6]. The main conclusion withdrawn from these works
is that the motion contrast is much more relevant than other features for predicting human
attentional behavior.

A feature contrast in the sense of VA refers to a contrast between a center and sur-
rounding region according to a specific feature such as intensity, chromaticity, orientation.
Consequently, the motion contrast refers to the difference in the motion between a center
and surrounding region. It was illustrated in [7] that the attention is linked to the motion
contrast in magnitude, since each direction is represented in a hierarchical way by several
speed selectivities ranges. In addition, this representation is composed of a set of direction
selectivities, which are linked to motion contrast in phase.

There are several ways for computing the motion conspicuity maps but all of them
serve conventional images, i.e. images obtained with conventional cameras and which we
call Euclidean. By now, there is no proposed algorithm for computing dynamic visual
attention in omnidirectional video. Nowadays, the demand of omnidirectional imaging is
increasing because of its larger field of view and it is widely used in robotics, surveillance
etc. It is clear that the omnidirectional sensors are related to the spherical geometry. In
fact, there exists an equivalence between the central catadioptric projecttion and the two-
step mapping onto the sphere [8]. On the other hand, the multi-camera sensors output
images directly in spherical coordinates [9].

This paper presents a computational model of dynamic visual attention on the sphere
which combines static and dynamic features in order to detect salient locations in omni-
directional image sequences. More specifically, it extends our previous work by providing
a methodology for computing motion contrast and motion conspicuity that is suited to
image sequences in spherical coordinates. Consequently, this model computes a spherical
saliency map that is related to static features and a saliency map derived from motion
scene features and then combines them into a dynamic saliency map which encodes stim-
ulus saliency. The different steps of the model are shown on Figure 1 and explained in the
following sections. Furthermore, the effect of the motion magnitude and phase is tested
with respect to the final spherical saliency map. For this reason, spherical video with still
and moving background is used.

The paper is organized as follows. In section 2, we remind the basic steps in the static
VA on the sphere computed using the intensity, chromatic and orientation features. Then,
we present an algorithm for computing the motion saliency map on the sphere in section
3. Finally, the fusion of the static and motion spherical saliency maps and obtaining the
dynamic saliency on the sphere is presented in 4. We apply the proposed algorithm on a
real omnidirectional image sequence obtained by a multicamera system in Section 5 and
we test the spherical versus Euclidean spots detection on the same sequence based on our
algorithm and on the Euclidean VA, respectively.
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Figure 1. Model of dynamic VA on the sphere which combines static and motion scene
features in order to detect salient locations in omnidirectional image sequences.



4 Bogdanova et al.

2. STATIC SPHERICAL SALIENCY MAP

Now, let us define the procedures for obtaining the different cue conspicuity maps on
the sphere which are then combined in order to obtain the static spherical saliency map.

Let us have as an input a spherical image f(θ, ϕ) ∈ L2(S2) with θ ∈ [0, π] and ϕ ∈ [0, 2π)
and of bandwidth β such that its Fourier coefficients f̂(l,m) = 0, ∀l > β. In fact, this
image is defined on 2β × 2β(β ∈ N) squared grid of, respectively, equi-angular resolution
in θ and ϕ:

G =

{

(θp, ϕq) : θp =
(2p+ 1)π

4β
ϕq =

qπ

β
, p, q ∈ Z[2β]

}

. (1)

Furthermore, each of the spherical image features are extracted. Then, a conspicuity
map for each feature is built. Finally, the spherical saliency map is obtained by fusing
together all the spherical cue conspicuity maps. Precise details on computing the static
spherical saliency map can be found in [10] but here we remind some basic points.

2.1. Computing Several Features on the Sphere

First, we need to define each of the static features j = 1 · · · 7 in the spherical image, fj

as follows:

1. intensity: fint = 0.3r + 0.59g + 0.11b;

2. yellow-blue: fBY = (b−r/2−b/2)
fint

;

3. red-green: fRG = (r−g)
fint

;

4. four orientations: f00 , f450 , f900 , f1350 . They are obtained applying a Gabor pyramid
on fint where the spherical Gabor filter [5] reads

ψgabor(θ, ϕ, φ) = λ1/2(θ, a)eik0
2

a
tan θ

2 cos (φ− ϕ)e−
2

a2
tan2 θ

2

(

1 +
1

a2
tan2 θ

2

)

, (2)

where θ ∈ [0, π], ϕ ∈ [0, 2π), φ ∈ {00, 450, 900, 1350}, respectively and k0 = 30, a =
0.03 and λ(θ, a) is a normalization factor;

2.2. Spherical Conspicuity Map for Each Feature

Let us have a spherical image f0 defined on a grid of size 2n+2 × 2n+2. The procedure
for computing the spherical feature conspicuity map Cj relies on the spherical Gaussian
pyramid and the center-surround mechanism. It includes the following steps:

1. Construct the n-level spherical gaussian pyramid ;

2. Compute the multiscale maps :

M1 = |f2 ⊖ f5|,M2 = |f2 ⊖ f6|,M3 = |f3 ⊖ f6|,

M4 = |f3 ⊖ f7|,M5 = |f4 ⊖ f7|,M6 = |f4 ⊖ f8|, (3)

where ⊖ refers to a cross-scale difference operator that interpolates the coarser scale
to the finer one and then performs a point-by-point substraction;
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3. Compute the weight coefficients wS2 and normalize the maps as follows

NS2(C(θ, ϕ)) = wS2 · C(θ, ϕ), (4)

with

wS2 =
4πMax(C(θ, ϕ))

∑

θ

∑

ϕC(θ, ϕ) sin θ
,

where C(θ, ϕ) is the corresponding spherical conspicuity map;

4. Compute the final spherical feature conspicuity map Cj using

Cj =

n−3
∑

k=1

N (Mk), (5)

where Mk is the multiscale map defined above.

This procedure is applied to each of the features in order to compute seven spherical
conspicuity maps Cj, j = 1 · · ·7.

2.3. Spherical Cue Conspicuity Maps

Using all feature conspicuity maps as obtained in Section 2.2, the following cue con-
spicuity maps are computed:

1. Cint = C1;

2. Cchrom =
N

S2(C2)+N
S2(C3)

2
, where C2 is the red-green spherical conspicuity map and

C3 is the yellow-blue conspicuity map. They are normalized according Equation (4)
;

3. Corient =
N

S2(C4)+N
S2(C5)+N

S2(C6)+N
S2(C7)

4
, where C4, C5, C6, C7 are obtained after ap-

plying the procedure in Section 2.2 on the four orientation features from Section
2.1-4, and normalized according Equation (4).

Finally, the static spherical saliency map is computed by fusing together all cue con-
spicuity maps obtained in Section 2.3:

SS2 =
∑

cue∈int,chrom,orient

N (Ccue), (6)

where N () is the normalization step according to Equation (4). Due to the different
nature of the spherical cue conspicuity maps, the conspicuity cues are previously scaled
at the same range values by applying a peak-to-peak normalization.
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3. MOTION SPHERICAL SALIENCY MAP

Since motion is involved in the VA mechanism, a computational VA model that is de-
signed for omnidirectional video sequences must consider both static and dynamic features
on the sphere. The dynamic spherical saliency map DS2 is meant to highlight the moving
scene constituents on the sphere, and consequently in omnidirectional images. In fact, we
assume that the location where something moves is salient.

From a physical point of view, the motion ~v at a location on the sphere ω ≡ (θ, ϕ) ∈
S2, θ ∈ [o, π], ϕ ∈ [0, 2π) and time t is defined as the derivative of ω over the time, which
reads

~v(ω, t) = lim
∆t→0

~d

∆t
=
dω

dt
, (7)

i.e. the motion can be seen as the displacement ~d on the sphere by an infinitesimal time
interval ∆t.

From image processing point of view, each image pixel corresponds to the intensity
value obtained by projection of the 3D space onto the image plane. Motion can be
induced either by the displacement of the object in 3D space or the displacement of the
sensor plane, or both. Due to the discrete nature of the video stream, motion ~v is defined
as the displacement between two consecutive frames (spherical images):

~v =
d

∆t
, (8)

and the motion in the omnidirectional image plane is often represented by a vector field
M = {~v(ω)}.

We compute the motion vector at different scales taking advantage of the spherical
gaussian pyramid. This multi-scale approach allows the detection of small displacements
at fine scales, whereas large displacements are detected at coarser scales.

In general, the relative motion is the difference between the local and the dominant
motion. The local motion ~Vlocal at each point on the sphere ω ≡ (θ, ϕ) (or the motion
vector) can be obtained by, for instance, a block matching. It is computed through series
of levels (resolutions) each providing the input for the next. Moreover, on each resolution,
the block matching is done for a certain neighborhood (window) size, that increases with
the hierarchy level. In fact, the local motion does not necessary represent the motion
contrast but it is the case when the dominant motion is null, i.e. the camera is fixed.

3.1. Block Matching on the Sphere

An approach for computing the motion estimation in spherical images integrated into
a multi-resolution scheme was first developed in [11] in order to find a prediction image.
Here we concentrate on simple block- matching, i.e. it takes place at a single level and
we don’t need to propagate the motion vector in a pyramidal structure. It is clear that
the local motion estimation algorithm takes place in the spherical domain. The algorithm
simply pairs solid angles from two spherical signals and we call it spherical block matching
algorithm (sBMA). It aims at computing the motion field between two spherical images.
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Let us define two spherical images as f(θ, ϕ) and g(θ, ϕ) and sample them on an equi-
angular grid:

Gj = {(θjp, ϕjq) ∈ S
2 : θjp =

(2p+ 1)π

4Bj
, ϕjq =

qπ

Bj
}, (9)

p, q ∈ {n ∈ N : n < 2Bj} for some range of bandwidth B = {Bj ∈ 2N, j ∈ Z}. This
grid allows us to perfectly sample any band-limited function f ∈ L2(S2) of bandwidth Bj .
Moreover, this class of sampling grids is associated to a fast spherical fourier transform.

Algorithm 1 Block matching on the sphere

Mi = [0, 0], ∀i, δθ = π
2B
, δϕ = 2π

2B
, B ≡ full resolution

divide g into I uniform blocks of size Mδθ ×Nδϕ;
i = 0;
repeat

(pi, qi)← position of gi;
Ω← {(p, q)}such that
p ∈ [pi + Mi(1)− Wδθ

2
+ 1, pi + Mi(1) + Wδθ

2
] and

q ∈ [qi + Mi(2)− Wδϕ

2
+ 1, qi + Mi(2) + Wδϕ

2
];

fi = arg minΩMSE(gi, fi);
(wi, ti)← position of fi;
Mi ← [pi + wi, qi + ti];
i← i+ 1;

until i > I

Then, the spherical image g is divided into uniform solid angles of size Mδθ × Nδϕ
that form blocks gi. These are paired with the best matching blocks with the same size
in the reference spherical image f within a search window of size Wδθ × Wδϕ around
the location of the block gi. A full search of each block gi determines the corresponding
motion vectors M. We must note that even the blocks gi are all distinct, the blocks fi

may be overlapping. This algorithm also takes into account the periodicity in azimuthal
direction.

3.2. Motion Pyramid on the Sphere

In the sense of VA, center-surround contrast refers to a difference between a center
and surround region. Regarding static features, the alternative approach proposed in
[10] approximates the multiscale center-surround contrast using pyramid and cross-scale
differences. What concerns the motion feature, a parallel approach can be performed sim-
ilarly. The basics of the center surround contrast computation lay in creating a pyramidal
structure on the motion. In fact, computing the motion field at different levels of this
pyramid on the sphere is obtained by varying the block size in the sBMA.

In order to compute motion contrasts, the idea is basically to define two average motion
vectors from the motion pyramid, ~vc and ~vs, which represent the motion of center and
surround regions, respectively. The multiscale motion field pyramid Mn is composed of
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n motion maps Mi corresponding to the motion estimation at diferent scales i = 1 · · ·n.
Coarse scale maps detect motion of large regions while fine scale maps detect motion of
small regions. The initial resolution of the first level M1 is m1 × n1 and the resolution of
the consecutive levels is decreasing over the pyramid by a factor two between each level.
Average motion vectors ~vc and ~vs are obtained from Mn according to their corresponding
levels.

3.3. Motion Conspicuity Operators

Once the motion average vectors ~vc and ~vs have been estimated from the motion pyra-
mid, the next step toward computing the motion conspicuity is to apply on them a motion
conspicuity operator in order to detect center-surround contrasts. There are three possible
such operators:

3.3.1. Motion contrast in phase and magnitude

This operator computes the norm of the motion vector difference:

Dcs(~vc, ~vs) = ‖~vc(θ, ϕ)‖ − ‖~vs(θ, ϕ)‖, (10)

It is clear that it considers both the phase and the magnitude of the motion vector.

3.3.2. Motion contrast in magnitude

It consists in computing the norm of the center and surround motion vectors and then
to take the absolute difference. This reads:

Acs(~vc, ~vs) = |‖~vc(θ, ϕ)‖ − ‖~vs(θ, ϕ)‖|, (11)

where ~vc is the motion vector at the center level Mi and ~vs is the motion vector at the
surround level which is up-sampled to the corresponding resolution.

3.3.3. Motion contrast in phase

This operator is sensitive to motion phase difference.

Bcs(~vc, ~vs) = O
(

arctan
vcϕ

vsθ

− arctan
vcϕ

vsθ

)

, (12)

O(α) =

{

α, if 0 6 α 6 π

(2π − α), otherwise,
(13)

where (vcθ, vsϕ) and (vcθ, vsϕ) are the θ, ϕ components of the vectors ~vc and ~vs. O(α) is
used to shift the phase difference when the phase exceeds π.

3.4. Algorithm for Computing the Spherical Motion Conspicuity Map

In this section we propose an algorithm for computing the spherical motion conspicu-
ity map using spherical motion pyramid. Its block diagram is shown on Figure 2 and
comprises the following steps.

• Build the multi-scale motion pyramid on the sphere M, as in section 3.2;
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• Compute the spherical motion magnitude conspicuity map CS2
magitude

by applying
the magnitude conspicuity operator Acs from Equation 11 to the multi-scale motion
pyramid Mi;

• Compute the spherical motion phase conspicuity map CS2
phase

by applying the phase
conspicuity operator Bcs from Equation 12 to the multi-scale motion pyramid Mi;

• Combine in classical manner the two previously obtained conspicuity maps and
obtain the motion spherical conspicuity map:

MS2
p&m

= N (CS2
phase

) +N (CS2
magitude

), (14)

where CS2
phase

=
∑

ijN (Bij) and CS2
magnitude

=
∑

ijN (Aij).

The intermediate phase conspicuity maps Bij highlight phase differences between a
center level i and a surround level j, while the intermediate magnitude conspicuity maps
Aij highlight the magnitude differences at the same corresponding levels. Furthermore,
the obtained motion map on the sphere is combined with the static spherical saliency
map in order to obtain the dynamic saliency map on the sphere as explained in the next
section.

4. FUSION OF STATIC AND MOTION SPHERICAL MAPS

In this section, we aim at integrating the static spherical saliency map SS2 and the
dynamic one MS2 in order to obtain the final spherical saliency map DS2. Such a com-
bination is difficult but necessary when several maps are considered. This yields a single
measure of interest for each location regardless of which feature has contributed to the
saliency.

Indeed, the static saliency map is computed on each sphere from the sequence, while the
dynamic one is computed on two successive spheres. The data driven competition mech-
anism presented in Section 2 is a suitable integration concept for both cues. Therefore,
the final spherical saliency map is computed according the equation

DS2 = wsSS2 + wdMS2 , (15)

where the coefficients ws ans wd are combuted according weighting function w presented
in (4).

Once we have obtained the final spherical saliency map, the most salient locations on
the sphere are selected by applying the ”Winer-Take-All” (WTA) network in the same
manner as in the case of static visual attention on the sphere. The complete details can
be found in [10].

5. EXPERIMENTAL RESULTS

In this section we first apply the spherical dynamic visual attention algorithm on real
spherical videos. We have tested it on ten different sequences but here we show only some
of them. The working sequences are obtained with multi-camera omnidirectional sensor
[9], which directly outputs them in spherical coordinates (θ, ϕ). Each of these images is
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defined on 1024 × 1024-spherical grid and cover almost 75% from the sphere. The first
experiment is straightforward and concerns a general application of our algorithm to real
omnidirectional image sequences. Second, we examine the effect of the amplitude and
the direction (phase) of the spherical motion on computing the spherical saliency map
and consequently their affect on defining the spots of attention. Finally, we compare our
algorithm to the standard one by applying the spherical and conventional dynamic visual
attention algorithm on the same omnidirectional video.

5.1. Spots of attention in Real Omnidirectional Video

Let us take a sequence of 17 spherical images. The scene is taken in an office where
the camera is pointing down the table on which a toy-car is moving. While crossing
the table, the car passes through the north pole of the sphere. For this example, we
show some of the intermediate results for better illustration of the entire dynamic visual
attention mechanism on the sphere. Applying the sBMA with a varying block size of
4× 4, 8× 8, 16× 16, 32× 32, 64× 64, we obtain a five-level motion pyramid on the sphere.
After applying the procedure described in Section 3.4, where both the magnitude and
phase of the spherical motion field are considered, we obtain the spherical motion cue. It
is shown on Figure 3 for some of the frames in this sequence.

The final spherical saliency mapis obtained by summing the spherical motion and static
cues and is shown on Figure 4.

Consequently, based on the final spherical saliency map, the spots of attention on the
sphere are detected. The first three most salient locations on the sphere are shown on
Figure 5. The spot of attention with rank one is shown in red. which in our case is
the car. Again, it is important to note that even when the car is passing through the
north Pole of the sphere, as expected, it is detected as salient. Furthermore, in frame 16,
the car is not detected as the most salient object in the scene. In fact it is not moving
anymore. In this frame, the most salient location is one of the red chairs around the table.
This suggests that the motion is dominant in determining the saliency even in spherical
coordinates. When there is no motion in a given scene, the saliency is determined by the
color opponency.

5.1.1. Motion Magnitude versus Motion Direction on the Sphere

In order to better examine the influence of the motion magnitude and direction (phase)
on the dynamic visual attention in spherical coordinates, we perform the following exper-
iment. For building the motion cue only the motion amplitude or only the motion phase
is considered. Furthermore, both ways of computing the motion cue on the sphere is ap-
plied on omnidirectional video, obtained with static and moving omnidirectional sensor,
respectively, i.e. with still or moving background.

First, the still background video is examined. The motion cue is computing while con-
sidering only the spherical motion contrast in magnitude. In Figure 6 are illustrated some
of the frames in the ”corridor” sequence. Apart the salient objects in the posters fixed on
the walls, another two simultaneous motions are available: two persons are going out of
the office. For purpose of visualization the unwrapped spherical image is shown and only
the first five detected spots of attention. Their rank is as follows: 1- red, 2-green, 3-blue ,
4- yellow, 5 - magenda. One can easily observe that when considering only the magnitude
in still background omnidirectional video, the most salient location is determined mainly



12 Bogdanova et al.

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

X
Y

Z

(a)

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

X
Y

Z

(b)

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

X
Y

Z

(c)

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

X
Y

Z

(d)

Figure 3. Spherical motion cue: (a) frame 8; (b) frame 10; (c) frame 12; (d) frame 14;
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Figure 4. Final spherical saliency map on some of the frames in the sequence: (a) frame
8; (b) frame 10; (c) frame 12; (d) frame 14;



14 Bogdanova et al.

(a) (b)

(c) (d)

(e) (f)

Figure 5. Spots of attention in some of the frames in the spherical image sequence: (a)
frame 6; (b) frame 8 ; (c) frame 10 ; (d) frame 12; (e) frame 14; (f) frame 16. The
most salient object in this image sequence is given in red. The motion is dominant in
determining the dynamic spherical saliency.



Dynamic Visual Attention on the Sphere 15

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6. Spots of attention in still-background omnidirectional video. For computing
the spherical motion conspicuity, only the magnitude (on the left) and only the phase (on
the right) is considered.
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from the color opponency even a motion is available in scene. Throughout the sequence,
it is the red object that is constantly the most salient location. When a motion appears
Figure 6(c), it determines the second spot in the corresponding frame but immediately
afterwards none of the two motions determine any saliency (Figure 6(e,g)). On another
hand, when the spherical motion contrast in phase is considered, the most salient object is
the walking person Figure 6(d) and it remains as such in the following frames where there
is a motion Figure 6(f,h). Even-though the rank of the attention spots changes in (h), the
motion remains dominant. In conclusion, what concerns still background spherical image
sequences, the motion phase highly influences the final saliency on the sphere.

The second experiment is carried out on moving background omnidirectional video.
The sequence is obtained while the sensor is placed on a moving table. In the same
time, there is a walking person who moves in parallel to the table. The same reasoning
for computing the spherical motion conspicuity is considered, i.e. the motion magnitude
and phase are examined separately. Again, the unwrapped spherical version is shown on
Figure 7 with the first five spots of attention. In this figure on the left, the magnitude is
considered while on the right - only the phase is used for computing the spherical motion
cue.

It is interesting to note that in this case, when the motion contrast in magnitude is
considered, the face of the person is always detected as salient even with a different rank
(Figure 7(a,c,e,g)) while this is not the case when only the spherical motion phase is used.
On the other hand, the majority of the spots are in the background when the contrast is
in the phase (Figure7(b,d,f,h)).

5.2. Spherical versus Euclidean Dynamic Visual Attention

In this section we perform a simple experiment using the ”car” omnidirectional sequence
of spherical images. In figure 8 are shown the spots of attention as detected by the
spherical VA algorithm and present them in their unwrapped version, where ϕ ∈ [0, 2π)
is at the horizontal axis and θ ∈ [0, π] is at the vertical axis. Let us remind that the
beginning and the end of the vertical axis correspond to the North and the South pole
of the sphere, respectively. Frames 6, 8,10,12,14 are shown with the corresponding first
three spots of attention detected by applying the VA in spherical coordinates. The spots
look distorted in this unwrapped version while they represent a disk. For instance, the
red spot tends to a line while in spherical coordinates it is a disk approaching the sphere’s
pole. We can see, that as expected, the car is detected as the most salient object (in red)
along the sequence while moving even when it is passing through the north pole of the
sphere (Figure 8(c),(d),(e)). After the car stops, the most salient spot is the red chair
(Figure 8 (f) ). In fact, when there are no moving objects in the scene, the static spherical
saliency map is dominant in the context of computing the final spherical saliency map.

Let us now, consider the unwrapped spherical image as if it were an Euclidean one
and apply on it the Euclidean dynamic visual attention model. The Euclidean motion
cue is obtained using both the magnitude and phase of the motion vector. The motion
is detected using block-matchng algorithm as well. The obtained results are depicted
in Figure 9. In fact, the car is completely distorted while passing through the north
pole. Here, we refer to a distortion, as any deformation in the scene resulting from
unwrapping of the spherical image. Such distortion would persist even in the case of
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7. Spots of attention in moving background omnidirectional video. Left: motion
magnitude. Right: spherical motion phase.
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Figure 8. Euclidean vs Spherical dynamic VA: the spots of attention are detected by the
VA on the sphere and the first three detected objects are shown. While moving even
through the north pole of the sphere, the car is the most salient object in this sequence.
In the last frame (f), the most salient object is a red chair since the car is not moving
anymore
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(a) (b)

(c) (d)

(e)

Figure 9. Euclidean vs Spherical dynamic VA: the Euclidean VA algorithm is applied on
the unwrapped omnidirectional sequence. The first three most salient locations are shown
and ranked. Even the car is the only moving object in the scene it is detected as the most
salient location only in frame 6 (a) and partly in frame 12 (d).
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mapping any omnidirectional image to a cylinder, i.e. creating a panoramic version of the
omnidirectional image. Even-though, the car is the only moving object in the scene it is
detected as the most salient location only in frame 6 (a) and partly in frame 12 (d). While
it is completely distorted on the north pole, it is not perceived as a unique object from
Euclidean point of view and this is the main reason it is not detected as salient object at
all.

In conclusion, through this experiment we have demonstrated that the dynamic spher-
ical VA algorithm performs better in omnidirectional images compared to the standard
(Euclidean) VA algorithm.

CONCLUSIONS

In this paper we have proposed an algorithm for computing the spherical motion con-
spicuity map. It is based on extracting the motion vector between two consecutive spheri-
cal images where block matching in spherical coordinates is performed. Then, the dynamic
spherical saliency map has been computed using the motion conspicuity map. The dy-
namic saliency map on the sphere is obtained by fusing together the static and motion
spherical saliency maps. Furthermore, this algorithm has been applied on a real sequence
of spherical images and the spots of attention based on the final spherical saliency map
have been detected. The spherical motion magnitude and phase have been examined
separately while using spherical video with still and moving background. Finally, a com-
parison of the dynamic spherical spots detection versus the Euclidean spots detection has
been done and thus the advantages of the dynamic VA on the sphere against the Euclidean
dynamic VA have been confirmed. Furthermore, the proposed algorithm is universal in
omnidirectional image sense because it can be applied on different kind of such images
once they have been mapped on the sphere.
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